Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
5 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
Video ECMAScript program Planting Native Grasses: Missouri Forage and Livestock Series
Pat Keyser (University of Tennessee) and Rick Rath (Missouri Department of Conservation) share about establishing and managing native grasses on pasture lands. Native grasses benefit not only livestock, but wildlife too. This webinar can help practitioners and landowners alike. Filmed January 20, 2021 - Missouri Forage and Livestock Series
Located in Training Resources / Webinars and Instructional Videos
File PDF document Changes in Avian and Plant Communities of Aspen Woodlands over 12 Years after Livestock Removal in the Northwestern Great Basin
Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500-ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow-pocket aspen plots. On each 1.5-ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot’s 150-m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow-pocket aspen produced extensive regeneration of new shoots ( x ̄ = 2646 stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium-diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow-pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow-pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow-pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic-level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.
Located in Resources / Climate Science Documents
File PDF document Effects of grazing on grassland soil carbon: a global review
Soils of grasslands represent a large potential reservoir for storing CO2, but this potential likely depends on how grasslands are managed for large mammal grazing. Previous studies found both strong positive and negative grazing effects on soil organic carbon (SOC) but explanations for this variation are poorly developed. Expanding on previous reviews, we performed a multifactorial meta-analysis of grazer effects on SOC density on 47 independent experimen- tal contrasts from 17 studies. We explicitly tested hypotheses that grazer effects would shift from negative to positive with decreasing precipitation, increasing fineness of soil texture, transition from dominant grass species with C3 to C4 photosynthesis, and decreasing grazing intensity, after controlling for study duration and sampling depth. The six variables of soil texture, precipitation, grass type, grazing intensity, study duration, and sampling depth explained 85% of a large variation (`150 g m␣2 yr␣1) in grazing effects, and the best model included significant interactions between precipitation and soil texture (P = 0.002), grass type, and grazing intensity (P = 0.012), and study duration and soil sampling depth (P = 0.020). Specifically, an increase in mean annual precipitation of 600 mm resulted in a 24% decrease in grazer effect size on finer textured soils, while on sandy soils the same increase in precipitation pro- duced a 22% increase in grazer effect on SOC. Increasing grazing intensity increased SOC by 6–7% on C4-dominated and C4–C3 mixed grasslands, but decreased SOC by an average 18% in C3-dominated grasslands. We discovered these patterns despite a lack of studies in natural, wildlife-dominated ecosystems, and tropical grasslands. Our results, which suggest a future focus on why C3 vs. C4-dominated grasslands differ so strongly in their response of SOC to grazing, show that grazer effects on SOC are highly context-specific and imply that grazers in different regions might be managed differently to help mitigate greenhouse gas emissions. Keywords: carbon sequestration, grasslands, grazing, grazing intensity, precipitation, soil organic carbon, soil texture
Located in Resources / Climate Science Documents
File PDF document Effect of per-capita land use changes on Holocene forest clearance and CO2 emissions
The centerpiece of the early anthropogenic hypothesis is the claim that humans took control of greenhouse-gas trends thousands of years ago because of emissions from early agriculture (Ruddiman, 2003, 2007). A common reaction to this claim is that too few people lived thousands of years ago to have had a major effect on either land use or greenhouse-gas concentrations. Implicit in this view is the notion that per-capita land clearance has changed little for millennia, but numerous field studies have shown that early per-capita land use was large and then declined as increasing population density led to more intensive farming. Here we explore the potential impact of changing per-capita land use in recent millennia and conclude that greater clearance by early agriculturalists could have had a disproportionately large impact on CO2 emissions.
Located in Resources / Climate Science Documents
Native grasses win performance tests
More than one study shows good gains and low costs from native forages.
Located in News & Events