Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

Management practices increase the impact of roads on plant communities in forests

The question of the interaction between management practices and road effects on forest biodiversity is of critical interest for sustainable practices and the conservation of forest communities. Forest road improvement and easier access to stand interiors via skid trails, are integral components of management. We tested whether skid trails and the use of limestone gravel for road improvement extended the road effect on plant communities further into forest habitats in a nutrient-poor environment. We analyzed how road distance and skid trail presence affect stand plant communities by examining species compo- sition, distribution of biological and ecological traits, individual species responses and environmental plant indicator values. All results showed that the road effect extended deeper into forest on skid trails, i.e. up to 20 m and even 60 m, than off skid trails, i.e. up to 10 m. Skid trails served as penetration con- duits for open-habitat species probably due to forest machinery traffic. The road effect was more damag- ing to forest species and less-competitive species on skid trails. Additionally, limestone gravel modified the acidity of adjacent poor soils, leading to a shift in species composition and to a colonization of the stand interior by basophilous species. We advocate minimizing skid trail density and using endogenous materials for roads to keep sections of forest large enough to conserve disturbance-sensitive forest species. The interaction found between road effects and management practices underlines the need to adopt a landscape-scale view and to consider multiple anthropogenic impacts in order to effectively preserve forest plant communities.

Read More…

The Disappearing Cryosphere: Impacts and Ecosystem Responses to Rapid Cryosphere Loss

The cryosphere—the portion of the Earth’s surface where water is in solid form for at least one month of the year—has been shrinking in response to climate warming. The extents of sea ice, snow, and glaciers, for example, have been decreasing. In response, the ecosystems within the cryosphere and those that depend on the cryosphere have been changing. We identify two principal aspects of ecosystem-level responses to cryosphere loss: (1) trophodynamic alterations resulting from the loss of habitat and species loss or replacement and (2) changes in the rates and mechanisms of biogeochemical storage and cycling of carbon and nutrients, caused by changes in physical forcings or ecological community functioning. These changes affect biota in positive or negative ways, depending on how they interact with the cryosphere. The important outcome, however, is the change and the response the human social system (infrastructure, food, water, recreation) will have to that change. Keywords: cryosphere, ecosystem response, environmental observatories

Read More…

Spatially and temporally consistent prediction of heavy precipitation from mean values

Extreme precipitation can cause flooding, result in substantial damages and have detrimental effects on ecosystems1,2. Climate adaptation must therefore account for the greatest precipitation amounts that may be expected over a certain time span3. The recurrence of extreme-to-heavy precipitation is notoriously hard to predict, yet cost–benefit estimates of mitigation and successful climate adaptation will need reliable information about percentiles for daily precipitation. Here we present a new and simple formula that relates wet-day mean precipitation to heavy precipitation, providing a method for predicting and downscaling daily precipitation statistics. We examined 32,857 daily rain-gauge records from around the world and the evaluation of the method demonstrated that wet-day precipitation percentiles can be predicted with high accuracy. Evaluations against independent data demonstrated high skill in both space and time, indicating a highly robust methodology.

Read More…

Local climatic drivers of changes in phenology at a boreal-temperate ecotone in eastern North America

Ecosystems in biogeographical transition zones, or ecotones, tend to be highly sensitive to climate and can provide early indications of future change. To evaluate recent climatic changes and their impacts in a boreal-temperate ecotone in eastern North America, we analyzed ice phenology records (1975–2007) for five lakes in the Adirondack Mountains of northern New York State. We observed rapidly decreasing trends of up to 21 days less ice cover, mostly due to later freeze-up and partially due to earlier break-up. To evaluate the local drivers of these lake ice changes, we modeled ice phenology based on local climate data, derived climatic predictors from the models, and evaluated trends in those predictors to determine which were responsible for observed changes in lake ice. November and Decem- ber temperature and snow depth consistently predicted ice-in, and recent trends of warming and decreasing snow during these months were consistent with later ice formation. March and April temperature and snow depth consistently predicted ice-out, but the absence of trends in snow depth during these months, despite concurrent warming, resulted in much weaker trends for ice-out. Recent rates of warming in the Adirondacks are among the highest regionally, although with a different seasonality of changes (early winter > late winter) that is consistent with other lake ice records in the surrounding area. Projected future declines in snow cover could create positive feedbacks and accelerate current rates of ice loss due to warming. Climate sensitivity was greatest for the larger lakes in our study, including Wolf Lake, considered one of the most ecologically intact ‘wilderness lakes’ in eastern North America. Our study provides further evidence of climate sensitivity of the boreal-temperate ecotone of eastern North America and points to emergent conservation challenges posed by climate change in legally protected yet vulnerable landscapes like the Adirondack Park.

Read More…

The River Discontinuum: Applying Beaver Modifications to Baseline Conditions for Restoration of Forested Headwaters

Billions of dollars are being spent in the United States to restore rivers to a desired, yet often unknown, reference condition. In lieu of a known reference, practitioners typically assume the paradigm of a connected watercourse. Geological and ecological processes, however, create patchy and discontinuous fluvial systems. One of these processes, dam building by North American beavers (Castor canadensis), generated discontinuities throughout precolonial river systems of northern North America. Under modern conditions, beaver dams create dynamic sequences of ponds and wet meadows among free-flowing segments. One beaver impoundment alone can exceed 1000 meters along the river, flood the valley laterally, and fundamentally alter biogeochemical cycles and ecological structures. In this article, we use hierarchical patch dynamics to investigate beaver-mediated discontinuity across spatial and temporal scales. We then use this conceptual model to generate testable hypotheses addressing channel geomorphology, natural flow regime, water quality, and biota, given the importance of these factors in river restoration. Keywords: fluvial geomorphology, hierarchical patch dynamics, stream ecology, river continuum concept, river restoration

Read More…

Migrating Like a Herd of Cats: Climate Change and Emerging Forests in British Columbia

We combine climate tolerances of tree species with probable changes in insect, disease, fire, and other abiotic factors to describe probable changes in distribution of tree species in British Columbia. Predicting changes in forests confronts three major sources of uncertainty: predicting weather and climate, predicting tree species’ responses, and predicting changes in factors modifying the trees’ responses (e.g., pathogens, insects, and fire). Challenges in predicting weather exist because climate projection models differ and downscaling climate is difficult, particularly where weather stations are sparse. Challenges in predicting responses of individual tree species to climate are a result of species competing under a climate regime that we have not seen before and they may not have experienced before. This challenge is aggravated by the differential response of pathogens and insects, as well as by the effects of changes in fire frequency. We first examine the responses of in- dividual species, then we consider implications for broad regional forests. Despite the uncertainty, some trends are more likely than others. We present estimates of the relative species composition of future forests in British Columbia. KEYWORDS: climate change; insects; new regional forests; pathogens; moisture stress; tree migration

Read More…

Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen 1–6, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2)7, but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use1, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem- scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronose- quence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

Read More…

Predator-induced reduction of freshwater carbon dioxide emissions

Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosys- tem processes such as decomposition and primary production, according to food web theory1,2. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains sup- press freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions2,3. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster mod- esta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substan- tially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

Read More…

Natural and Beneficial Floodplain Functions: Floodplain Management— More than Flood Loss Reduction

This is a position paper prepared by the Association of State Floodplain Managers, (ASFPM), a non-profit professional organization dedicated to reducing flood losses and protecting floodplain functions and resources in the United States. Background With the passage of the National Environmental Policy Act over three decades ago, the United States established a foundation for protecting the environment amidst human development. In Section 101 of the Act, Congress declared that . . . it is the continuing policy of the Federal Government, in cooperation with State and local governments, and other concerned public and private organizations, to use all practicable means and measures, including financial and technical assistance, in a manner calculated to foster and promote the general welfare, to create and maintain conditions under which man and nature can exist in productive harmony, and fulfill the social, economic, and other requirements of present and future generations of Americans. However, the reality is that we seldom achieve this “productive harmony” with regard to our rivers, streams, wetlands, and coastal lowlands. As we move into the new century, we face hard choices about our riverine and coastal floodplains1. Relatively unfettered economic development, with only a token allowance made for floodplain functions and resources, cannot continue as the status quo. Instead, we need to strike a balance between development and the benefits that would be realized if we were to protect the natural functions of floodplains and coastal areas.

Read More…

Modeling sediment accumulation in North American playa wetlands in response to climate change, 1940–2100

Playa wetlands on the west-central Great Plains of North America are vulnerable to sediment infilling from upland agriculture, putting at risk several important ecosystem services as well as essential habitats and food resources of diverse wetland-dependent biota. Climate predictions for this semi-arid area indicate reduced precipitation which may alter rates of erosion, runoff, and sedimentation of playas. We forecasted erosion rates, sediment depths, and resultant playa wetland depths across the west-central Great Plains and exam- ined the relative roles of land use context and projected changes in precipitation in the sedimentation process. We estimated erosion with the Revised Universal Soil Loss Equation (RUSLE) using historic values and downscaled precipitation predictions from three general circulation models and three emissions scenarios. We calibrated RUSLE results using field sediment measurements. RUSLE is appealing for regional scale modeling because it uses climate forecasts with monthly resolution and other widely available values including soil texture, slope and land use. Sediment accumulation rates will continue near historic levels through 2070 and will be sufficient to cause most playas (if not already filled) to fill with sediment within the next 100 years in the absence of mitigation. Land use surrounding the playa, whether grassland or tilled cropland, is more influential in sediment accumulation than climate-driven precipitation change.

Read More…

Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America

How anthropogenic climate change will impact hydroclimate in the arid regions of Southwestern North America has implications for the allocation of water resources and the course of regional development. Here we show that there is a broad consensus amongst climate models that this region will dry significantly in the 21st century and that the transition to a more arid climate should already be underway. If these models are correct, the levels of aridity of the recent multiyear drought, or the Dust Bowl and 1950s droughts, will, within the coming years to decades, become the new climatology of the American Southwest.

Read More…

Late Pleistocene California droughts during deglaciation and Arctic warming

Recent studies document the synchronous nature of shifts in North Atlantic regional climate, the intensity of the East Asian monsoon, and productivity and precipitation in the Cariaco Basin during the last glacial and deglacial period. Yet questions remain as to what climate mechanisms influenced continental regions far removed from the North Atlantic and beyond the direct influence of the inter-tropical convergence zone. Here, we present U-series calibrated stable isotopic and trace element time series for a speleothem from Moaning Cave on the western slope of the central Sierra Nevada, California that documents changes in precipitation that are approximately coeval with Greenland temperature changes for the period 16.5 to 8.8 ka. From 16.5 to 10.6 ka, the Moaning Cave stalagmite proxies record drier and possibly warmer conditions, signified by elevated à18O, à13C, [Mg], [Sr], and [Ba] and more radiogenic 87Sr/86Sr, during Northern Hemisphere warm periods (Bølling, early and late Allerød) and wetter and possibly colder conditions during Northern Hemisphere cool periods (Older Dryas, Inter-Allerød Cold Period, and Younger Dryas). Moaning Cave stable isotope records indicate that wet conditions persisted in this area well beyond 11.5 ka, suggesting the effects of the Younger Dryas event may have been longer lived in the western Sierra Nevada than in Greenland. However, a shifting drip center and corresponding change in seepage water routing may have influenced the trace element records between 10.6 and 9.6 ka. Linkages between northern high-latitude climate and precipitation in the Sierra Nevada suggested here could indicate that, under conditions of continued global warming, this drought-prone region may experience a reduction in Pacific-sourced moisture.

Read More…

TUNDRA’S BURNING

More than 20,000 lightning strikes were recorded on the North Slope of Alaska in 2007. Some struck the vast stretches of lakes; some hit the treeless tundra. And one of them torched into life the largest and longest-lasting tundra fire recorded in the state’s history. The blaze, which started near the Anaktuvuk River on 16 July, burned 7,000 hectares a day at its peak, and eventually consumed 100,000 hectares, an area larger than that of New York City. It finally stopped burning in early October, smothered by thick snow. Arctic lightning fire

Read More…

The millennial atmospheric lifetime of anthropogenic CO2

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20–60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

Read More…

Turning back from the brink: Detecting an impending regime shift in time to avert it

Ecological regime shifts are large, abrupt, long-lasting changes in ecosystems that often have considerable impacts on human econ- omies and societies. Avoiding unintentional regime shifts is widely regarded as desirable, but prediction of ecological regime shifts is notoriously difficult. Recent research indicates that changes in ecological time series (e.g., increased variability and autocorrela- tion) could potentially serve as early warning indicators of im- pending shifts. A critical question, however, is whether such indicators provide sufficient warning to adapt management to avert regime shifts. We examine this question using a fisheries model, with regime shifts driven by angling (amenable to rapid reduction) or shoreline development (only gradual restoration is possible). The model represents key features of a broad class of ecological regime shifts. We find that if drivers can only be manipulated gradually management action is needed substantially before a regime shift to avert it; if drivers can be rapidly altered aversive action may be delayed until a shift is underway. Large increases in the indicators only occur once a regime shift is initiated, often too late for management to avert a shift. To improve usefulness in averting regime shifts, we suggest that research focus on defining critical indicator levels rather than detecting change in the indicators. Ideally, critical indicator levels should be related to switches in ecosystem attractors; we present a new spectral density ratio indicator to this end. Averting ecological regime shifts is also dependent on developing policy pro- cesses that enable society to respond more rapidly to information about impending regime shifts. early warning indicator 􏰆 ecological threshold 􏰆 spectral density ratio

Read More…

HOW LONG HAVE WE BEEN IN THE ANTHROPOCENE ERA?

Editorial- 1st paragraph: With great interest we have read Ruddiman’s intriguing article which is in favor of placing the start of the Anthropocene at 5–8 millennia BP instead of the late quarter of the 18th century. He shows how land exploitation for agriculture and animal husbandry may have led to enhanced emissions of CO2 and CH4 to the atmosphere, thereby modifying the expected changes in the concentrations of these gases beyond those expected from variations in the Milankovich orbital parameters. Much of his argument depends on the correctness of their projected CH4 concen- tration curve from 7,000 years BP to pre-industrial times showing a decline to about 425 ppb, according to Milankovich, instead of the measured 700 ppb. It appears, however, strange that in Ruddiman’s analysis the proposed increase of CH4 due to anthropogenic activities stopped at about 1000 years BP, because ice core data showed almost constant mixing ratios of CH4 between 1000 years BP and about 200 years ago before the rapid rise of CH4 in the industrial period (IPCC, 2001). A major feature of Ruddiman’s argument is that natural atmospheric CH4 concentrations depend strongly on geological varying summer time insolations in the tropical northern hemisphere, controlling tropical wetlands and methane release from decaying organic matter under anaerobic conditions.

Read More…

The Rescaling of Global Environmental Politics

Key Words governance, international, linked issues, networks, scale Abstract In the past half-century, the practice and study of global environmental politics and governance have been dramatically rescaled. They have be- come increasingly complex and interconnected with respect to the level (between local and global) at which they take place, the range of actors engaged in them, and the linkages between them and nominally nonen- vironmental issues. Global environmental politics and governance have been rescaled vertically down toward provincial and municipal gov- ernments and up toward supranational regimes. They have also been rescaled horizontally across regional and sectoral organizations and net- works and across new issues, such as development, security, and trade among others. This rescaling reflects shifts in the magnitude, complexity, and interconnectedness of the global environmental problems humans face as well as epistemological shifts in how humans understand and respond to these problems, and rescaling has implications for both the practice and study of global environmental politics.

Read More…

Insect Responses to Major Landscape-Level Disturbance

Keywords tolerance, dispersal, succession, local extinction, outbreak, population dynamics Abstract Disturbances are abrupt events that dramatically alter habitat conditions and resource distribution for populations and communities. Terrestrial land- scapes are subject to various disturbance events that create a matrix of patches with different histories of disturbance and recovery. Species tolerances to ex- treme conditions during disturbance or to altered habitat or resource condi- tions following disturbances determine responses to disturbance. Intolerant populations may become locally extinct, whereas other species respond posi- tively to the creation of new habitat or resource conditions. Local extinction represents a challenge for conservation biologists. On the other hand, out- breaks of herbivorous species often are triggered by abundant or stressed hosts and relaxation of predation following disturbances. These insect re- sponses can cause further changes in ecosystem conditions and predispose communities to future disturbances. Improved understanding of insect re- sponses to disturbance will improve prediction of population and community dynamics, as well as ecosystem and global changes.

Read More…

Global Cooling by Grassland Soils of the Geological Past and Near Future

Keywords grass, mammal, coevolution, paleosol, paleoclimate, carbon sequestration, albedo Abstract Major innovations in the evolution of vegetation such as the Devonian ori- gin of forests created new weathering regimes and soils (Alfisols, Histosols) that increased carbon consumption and sequestration and ushered in the Permian-Carboniferous Ice Age. Similarly, global expansion of grasslands and their newly evolved, carbon-rich soils (Mollisols) over the past 40 mil- lion years may have induced global cooling and ushered in Pleistocene glacia- tion. Grassland evolution has been considered a consequence of mountain uplift and tectonic reorganization of ocean currents, but it can also be viewed as a biological force for global change through coevolution of grasses and grazers. Organisms in such coevolutionary trajectories adapt to each other rather than to their environment, and so can be forces for global change. Some past farming practices have aided greenhouse gas release. However, modern grassland agroecosystems are a potential carbon sink already under intensive human management, and carbon farming techniques may be useful in curbing anthropogenic global warming.

Read More…

Toward an Era of Restoration in Ecology: Successes, Failures, and Opportunities Ahead

Keywords resilience, ecosystem restoration, restoration ecology, recovery, degradation, ecosystem services, environmental change, novel ecosystems Abstract As an inevitable consequence of increased environmental degradation and anticipated future environmental change, societal demand for ecosystem restoration is rapidly increasing. Here, I evaluate successes and failures in restoration, how science is informing these efforts, and ways to better ad- dress decision-making and policy needs. Despite the multitude of restora- tion projects and wide agreement that evaluation is a key to future progress, comprehensive evaluations are rare. Based on the limited available infor- mation, restoration outcomes vary widely. Cases of complete recovery are frequently characterized by the persistence of species and abiotic processes that permit natural regeneration. Incomplete recovery is often attributed to a mixture of local and landscape constraints, including shifts in species distributions and legacies of past land use. Lastly, strong species feedbacks and regional shifts in species pools and climate can result in little to no recovery. More forward-looking paradigms, such as enhancing ecosystem services and increasing resilience to future change, are exciting new direc- tions that need more assessment. Increased evidence-based evaluation and cross-disciplinary knowledge transfer will better inform a wide range of critical restoration issues such as how to prioritize sites and interventions, include uncertainty in decision making, incorporate temporal and spatial dependen- cies, and standardize outcome assessments. As environmental policy increasingly embraces restoration, the opportunities have never been greater.

Read More…