-
Assessing climate-sensitive ecosystems in the southeastern United States
-
The southeastern U.S. contains a unique diversity of ecosystems that provide important benefits, including habitat for wildlife and plants, water quality, and recreation opportunities. As climate changes, a better understanding of how our ecosystems will be affected is vital for identifying strategies to protect these ecosystems. While information on climate change affects exists for some ecosystems and some places, a synthesis of this information for key ecosystems across the entire Southeast will enable regional decision-makers, including the LCCs, to prioritize current efforts and plan future research and monitoring.
Located in
Research
-
Characterization of spatial and temporal variability in fishes in response to climate change
-
Predicting population responses to climate change requires an understanding of how population dynamics vary over space and time. For instance, a measured indicator may vary among repeated samples from a single site, from site to site within a lake, from lake to lake, and over time. Although variability has historically been viewed as an impediment to understanding population responses to ecological changes, the structure of variation can also be an important part of the response. In this project, we will build upon recently completed analyses of fish population data in the Great Lakes basin to help predict how spatial and temporal variation in fish populations may respond to climate change and other important drivers.
Located in
Research
-
Bringing people, data, and models together - addressing impacts of climate change on stream temperature
-
Few previous studies have focused on how climate change may impact headwater systems, despite the importance of these areas for aquatic refugia. The lack of these studies has resulted in the majority of climate impact assessments focusing on conservation of ecological systems at broad levels, and has not focused on turning results into useful and actionable information for managers on the ground. A critical and timely research question is: “What data and modeling frameworks are needed to provide scientists reliable, climate-informed, water temperature estimates for freshwater ecosystems that can assist watershed management decision making?” This research will answer this through two primary activities: 1) gathering and compiling existing stream temperature data within the DOI-Northeast region and subsequent deployment of data loggers to areas where additional data are needed, and 2) an intercomparison of state-of-the-art statistical and deterministic stream temperature models to evaluate their ability to replicate point stream temperature measurements and model scalability to non-gaged sites with the Northeast region.
Located in
Research
-
Developing long-term urbanization scenarios for the Appalachian and Gulf Coastal Plain and Ozarks LCCs as part of the Southeast Regional Assessment Project
-
Traditional urban growth models are very localized and data-intensive and lack the capability to be applied across large regions, in response to these limitations the North Carolina Cooperative Research Unit began using the USGS SLEUTH urban growth model to develop urbanization scenarios as part of the Southeast Regional Assessment Project (SERAP). Extensive modifications of the model framework and calibration were undertaken that resulted in the ability to rapidly develop urbanization scenarios for very large regions, such as the Appalachian and Gulf Coastal Plain Landscape Conservation Cooperatives (LCCs). This new modeling effort allows LCC’s to address fundamental questions that affect conservation planning over decadal time scales.
Located in
Research
-
Synthesis of climate model downscaling products for the southeastern United States
-
Downscaling translates large-scale climate information to the local scale. There are several techniques for handling this process; recently, several downscaled climate products have been produced by government and academic researchers. Ecologists, conservation scientists, and practitioners require such local guidance to evaluate adaptation and conservation strategies. However, the large number of methods involved, different downscaling approaches, resolutions, time periods, and focal variables limits the ability of these users to form meaningful conclusions and evaluate the results of adaptation strategies. To address these issues, this project will summarize the methods used for downscaling, identify the metrics most appropriate for evaluation of climate model skill and usability for the ecological and conservation communities in the southeastern US, and begin a longer-term effort to evaluate the range of downscaled climate products over this geographic region.
Located in
Research
-
Communicating and Using Uncertain Scientific Information in the Production of ‘Actionable Science’
-
Conservation practitioners must navigate many challenges to advance effective natural-resource management in the presence of multiple uncertainties. Numerous climatic and ecological changes remain on the horizon, and their eventual consequences are not completely understood. Even so, their influences are expected to impact important resources and the people that depend on them across local, regional, and sometimes global scales. Although forecasts of future conditions are almost always imperfect, decision makers are increasingly expected to communicate and use uncertain information when making policy choices that affect multiple user groups. The degree to which management objectives are met can depend on 1) how critical uncertainties are identified and accounted for, and 2) effective communication among user groups, scientists, and resource
managers.
Located in
Research
-
Assessment of terrestrial and aquatic monitoring programs in the Southeastern United States
-
A significant challenge faced by climate scientists in the public and private sector is the need for information about the historical status of ecological systems expected to be influenced by climate change. The need is especially acute for reliable and complete information about monitoring networks maintained by government and non-governmental organizations and associated data. While many organizations monitor one or more aspects of aquatic and terrestrial ecosystems, these monitoring programs are seldom coordinated and information about both the networks and the associated data are not readily available. The DOI Southeast Climate Science Center is participating in an effort by multiple federal, state, and other organizations to develop a comprehensive and integrated assessment of monitoring networks associated with atmospheric, stream, and terrestrial ecosystems. The objective of this two-year project is to support the development of this assessment.
Located in
Research
-
Hydrological modeling for flow-ecology science in the Southeastern United States
-
Stream flows are essential for maintaining healthy aquatic ecosystems and for supporting human water supply needs. Integrated modeling approaches assessing the impact of changes in climate, land use, and water withdrawals on stream flows and the subsequent impact of changes in flow regime on aquatic biota at multiple spatial scales are necessary to insure an adequate supply of water for humans and healthy river ecosystems. The combined application of simple, large scale models with more complex, high resolution models has the potential to provide for more robust climate change impact studies, which focus on maintaining a better balance between the availability of water to support aquatic assemblages while conserving water for long-term human needs than using either approach in isolation.
Located in
Research
-
Connectivity for Climate Change in the Southeastern United States
-
Climate change is already affecting biodiversity, changing the dates when birds arrive to breed and when flowers bloom in spring, and shifting the ranges of species as they move to cooler places. One problem for wildlife as their ranges shift is that their path is often impeded – their habitats have become fragmented by agriculture and urbanization, presenting barriers to their migration. Because of this, the most common recommended strategy to protect wildlife as climate changes is to connect their habitats, providing them safe passage. There are great challenges to implementing this strategy in the southeastern U.S., however, because most intervening lands between habitat patches are held in private ownership. We will combine data on key wildlife species and their habitats throughout the southeastern U.S. with new computer modeling technologies that allow us to identify key connections that will be robust to regional and global changes in climate and land use.
Located in
Research
-
Regional Glade Conservation Assessment
-
Glades and glade-woodland complexes are natural communities which provide high-quality habitat for several priority bird species including the Prairie Warbler, Blue-winged Warbler, Field Sparrow, Northern Bobwhite, Eastern Wood-Pewee. We also recognize the importance of glade complexes to other flora and fauna species of conservation concern.
Located in
Research