Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
Image JPEG image Swamp pink (Helonias bullata)
swamp pink_kerry Wixted_2010.jpg
Located in Research / / Assessing Vulnerability of Species and Habitats to Large-scale Impacts / Species and Habitat Vulnerability Assessment Photo Gallery
File PDF document Swinehart Cheney 1983.pdf
Located in Resources / TRB Library / STE-TAN
File PDF document Swinehart Cheney 1984.pdf
Located in Resources / TRB Library / STE-TAN
File PDF document Swinehart Cheney 1987.pdf
Located in Resources / TRB Library / STE-TAN
File PDF document Swingle 1966.pdf
Located in Resources / TRB Library / STE-TAN
File PDF document Sylvester et al 1984 Burrowing Rates.pdf
Located in Resources / TRB Library / STE-TAN
File PDF document Synchronous extinction of North America’s Pleistocene mammals
The late Pleistocene witnessed the extinction of 35 genera of North American mammals. The last appearance dates of 16 of these genera securely fall between 12,000 and 10,000 radiocarbon years ago (􏰂13,800–11,400 calendar years B.P.), although whether the absence of fossil occurrences for the remaining 19 genera from this time interval is the result of sampling error or temporally staggered extinctions is unclear. Analysis of the chronology of extinctions suggests that sampling error can explain the absence of terminal Pleistocene last appearance dates for the remaining 19 genera. The extinction chronology of North American Pleistocene mammals therefore can be characterized as a synchronous event that took place 12,000–10,000 radiocarbon years B.P. Results favor an ex- tinction mechanism that is capable of wiping out up to 35 genera across a continent in a geologic instant. climate change 􏰀 extraterrestrial impact 􏰀 overkill 􏰀 Quaternary extinctions 􏰀 radiocarbon dates
Located in Resources / Climate Science Documents
File PDF document Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers
The National Wildfire Coordinating Group definition of extreme fire behavior (EFB) indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/spotting, presence of fire whirls, and strong convection column. Predictability is difficult because such fires often exercise some degree of influence on their environment and behave erratically, sometimes dangerously. Alternate terms include “blow up” and “fire storm.” Fire managers examining fires over the last 100 years have come to understand many of the factors necessary for EFB development. This work produced guidelines included in current firefighter training, which presents the current methods of predicting EFB by using the crown fire model, which is based on the environmental influences of weather, fuels, and topography. Current training does not include the full extent of scientific understanding. Material in current training programs is also not the most recent scientific knowledge. National Fire Plan funds have sponsored newer research related to wind profiles’ influence on fire behavior, plume growth, crown fires, fire dynamics in live fuels, and conditions associated with vortex development. Of significant concern is that characteristic features of EFB depend on condi- tions undetectable on the ground, relying fundamentally on invisible properties such as wind shear or atmospheric stability. Obviously no one completely understands all the factors contributing to EFB because of gaps in our knowledge. These gaps, as well as the limitations as to when various models or indices apply should be noted to avoid application where they are not appropriate or warranted. This synthesis will serve as a summary of existing extreme fire behavior knowledge for use by fire managers, firefighters, and fire researchers. The objective of this project is to synthesize existing EFB knowledge in a way that connects the weather, fuel, and topographic factors that contribute to development of EFB. This synthesis will focus on the state of the science, but will also consider how that science is currently presented to the fire management community, including incident commanders, fire behavior analysts, incident meteorologists, National Weather Service office forecasters, and firefighters. It will seek to clearly delineate the known, the unknown, and areas of research with the greatest potential impact on firefighter protection.
Located in Resources / Climate Science Documents
File PDF document T_Root-Local adaption.pdf
Located in Resources / Climate Science Documents
File Tall Timbers Geospatial Center-Scoping Activity Updates 2020-2021
Tall Timbers Geospatial Center-Scoping Activity Updates 2020-2021
Located in Resources / SE FireMap 1.0 Resources / SE FireMap Project Process Documents