Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document The millennial atmospheric lifetime of anthropogenic CO2
The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20–60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.
Located in Resources / Climate Science Documents
File PDF document Turning back from the brink: Detecting an impending regime shift in time to avert it
Ecological regime shifts are large, abrupt, long-lasting changes in ecosystems that often have considerable impacts on human econ- omies and societies. Avoiding unintentional regime shifts is widely regarded as desirable, but prediction of ecological regime shifts is notoriously difficult. Recent research indicates that changes in ecological time series (e.g., increased variability and autocorrela- tion) could potentially serve as early warning indicators of im- pending shifts. A critical question, however, is whether such indicators provide sufficient warning to adapt management to avert regime shifts. We examine this question using a fisheries model, with regime shifts driven by angling (amenable to rapid reduction) or shoreline development (only gradual restoration is possible). The model represents key features of a broad class of ecological regime shifts. We find that if drivers can only be manipulated gradually management action is needed substantially before a regime shift to avert it; if drivers can be rapidly altered aversive action may be delayed until a shift is underway. Large increases in the indicators only occur once a regime shift is initiated, often too late for management to avert a shift. To improve usefulness in averting regime shifts, we suggest that research focus on defining critical indicator levels rather than detecting change in the indicators. Ideally, critical indicator levels should be related to switches in ecosystem attractors; we present a new spectral density ratio indicator to this end. Averting ecological regime shifts is also dependent on developing policy pro- cesses that enable society to respond more rapidly to information about impending regime shifts. early warning indicator 􏰆 ecological threshold 􏰆 spectral density ratio
Located in Resources / Climate Science Documents
File PDF document HOW LONG HAVE WE BEEN IN THE ANTHROPOCENE ERA?
Editorial- 1st paragraph: With great interest we have read Ruddiman’s intriguing article which is in favor of placing the start of the Anthropocene at 5–8 millennia BP instead of the late quarter of the 18th century. He shows how land exploitation for agriculture and animal husbandry may have led to enhanced emissions of CO2 and CH4 to the atmosphere, thereby modifying the expected changes in the concentrations of these gases beyond those expected from variations in the Milankovich orbital parameters. Much of his argument depends on the correctness of their projected CH4 concen- tration curve from 7,000 years BP to pre-industrial times showing a decline to about 425 ppb, according to Milankovich, instead of the measured 700 ppb. It appears, however, strange that in Ruddiman’s analysis the proposed increase of CH4 due to anthropogenic activities stopped at about 1000 years BP, because ice core data showed almost constant mixing ratios of CH4 between 1000 years BP and about 200 years ago before the rapid rise of CH4 in the industrial period (IPCC, 2001). A major feature of Ruddiman’s argument is that natural atmospheric CH4 concentrations depend strongly on geological varying summer time insolations in the tropical northern hemisphere, controlling tropical wetlands and methane release from decaying organic matter under anaerobic conditions.
Located in Resources / Climate Science Documents
File PDF document The Rescaling of Global Environmental Politics
Key Words governance, international, linked issues, networks, scale Abstract In the past half-century, the practice and study of global environmental politics and governance have been dramatically rescaled. They have be- come increasingly complex and interconnected with respect to the level (between local and global) at which they take place, the range of actors engaged in them, and the linkages between them and nominally nonen- vironmental issues. Global environmental politics and governance have been rescaled vertically down toward provincial and municipal gov- ernments and up toward supranational regimes. They have also been rescaled horizontally across regional and sectoral organizations and net- works and across new issues, such as development, security, and trade among others. This rescaling reflects shifts in the magnitude, complexity, and interconnectedness of the global environmental problems humans face as well as epistemological shifts in how humans understand and respond to these problems, and rescaling has implications for both the practice and study of global environmental politics.
Located in Resources / Climate Science Documents
File PDF document Insect Responses to Major Landscape-Level Disturbance
Keywords tolerance, dispersal, succession, local extinction, outbreak, population dynamics Abstract Disturbances are abrupt events that dramatically alter habitat conditions and resource distribution for populations and communities. Terrestrial land- scapes are subject to various disturbance events that create a matrix of patches with different histories of disturbance and recovery. Species tolerances to ex- treme conditions during disturbance or to altered habitat or resource condi- tions following disturbances determine responses to disturbance. Intolerant populations may become locally extinct, whereas other species respond posi- tively to the creation of new habitat or resource conditions. Local extinction represents a challenge for conservation biologists. On the other hand, out- breaks of herbivorous species often are triggered by abundant or stressed hosts and relaxation of predation following disturbances. These insect re- sponses can cause further changes in ecosystem conditions and predispose communities to future disturbances. Improved understanding of insect re- sponses to disturbance will improve prediction of population and community dynamics, as well as ecosystem and global changes.
Located in Resources / Climate Science Documents
File PDF document Global Cooling by Grassland Soils of the Geological Past and Near Future
Keywords grass, mammal, coevolution, paleosol, paleoclimate, carbon sequestration, albedo Abstract Major innovations in the evolution of vegetation such as the Devonian ori- gin of forests created new weathering regimes and soils (Alfisols, Histosols) that increased carbon consumption and sequestration and ushered in the Permian-Carboniferous Ice Age. Similarly, global expansion of grasslands and their newly evolved, carbon-rich soils (Mollisols) over the past 40 mil- lion years may have induced global cooling and ushered in Pleistocene glacia- tion. Grassland evolution has been considered a consequence of mountain uplift and tectonic reorganization of ocean currents, but it can also be viewed as a biological force for global change through coevolution of grasses and grazers. Organisms in such coevolutionary trajectories adapt to each other rather than to their environment, and so can be forces for global change. Some past farming practices have aided greenhouse gas release. However, modern grassland agroecosystems are a potential carbon sink already under intensive human management, and carbon farming techniques may be useful in curbing anthropogenic global warming.
Located in Resources / Climate Science Documents
File PDF document Toward an Era of Restoration in Ecology: Successes, Failures, and Opportunities Ahead
Keywords resilience, ecosystem restoration, restoration ecology, recovery, degradation, ecosystem services, environmental change, novel ecosystems Abstract As an inevitable consequence of increased environmental degradation and anticipated future environmental change, societal demand for ecosystem restoration is rapidly increasing. Here, I evaluate successes and failures in restoration, how science is informing these efforts, and ways to better ad- dress decision-making and policy needs. Despite the multitude of restora- tion projects and wide agreement that evaluation is a key to future progress, comprehensive evaluations are rare. Based on the limited available infor- mation, restoration outcomes vary widely. Cases of complete recovery are frequently characterized by the persistence of species and abiotic processes that permit natural regeneration. Incomplete recovery is often attributed to a mixture of local and landscape constraints, including shifts in species distributions and legacies of past land use. Lastly, strong species feedbacks and regional shifts in species pools and climate can result in little to no recovery. More forward-looking paradigms, such as enhancing ecosystem services and increasing resilience to future change, are exciting new direc- tions that need more assessment. Increased evidence-based evaluation and cross-disciplinary knowledge transfer will better inform a wide range of critical restoration issues such as how to prioritize sites and interventions, include uncertainty in decision making, incorporate temporal and spatial dependen- cies, and standardize outcome assessments. As environmental policy increasingly embraces restoration, the opportunities have never been greater.
Located in Resources / Climate Science Documents
File PDF document Slow Recovery from Perturbations as a Generic Indicator of a Nearby Catastrophic Shift
The size of the basin of attraction in ecosystems with alternative stable states is often referred to as “ecological resilience.” Ecosystems with a low ecological resilience may easily be tipped into an alternative basin of attraction by a stochastic event. Unfortunately, it is very difficult to measure ecological resilience in practice. Here we show that the rate of recovery from small perturbations (some- times called “engineering resilience”) is a remarkably good indicator of ecological resilience. Such recovery rates decrease as a catastrophic regime shift is approached, a phenomenon known in physics as “crit- ical slowing down.” We demonstrate the robust occurrence of critical slowing down in six ecological models and outline a possible ex- perimental approach to quantify differences in recovery rates. In all the models we analyzed, critical slowing down becomes apparent quite far from a threshold point, suggesting that it may indeed be of practical use as an early warning signal. Despite the fact that critical slowing down could also indicate other critical transitions, such as a stable system becoming oscillatory, the robustness of the phenom- enon makes it a promising indicator of loss of resilience and the risk of upcoming regime shifts in a system. Keywords: alternative stable states, catastrophic bifurcations, critical slowing down, early warning signals, resilience, return time.
Located in Resources / Climate Science Documents
File PDF document AGU: Human-induced climate change requires urgent action.
1st paragraph: concentrations of carbon dioxide and other heat-trapping greenhouse gases have increased sharply since the Industrial Revolution. Fossil fuel burning dominates this increase. Human-caused increases in greenhouse gases are responsible for most of the observed global average surface warming of roughly 0.8°C (1.5°F) over the past 140 years.
Located in Resources / Climate Science Documents
File PDF document Trees on farms: Tackling the triple challenge of 07 mitigation, adaptation and food security
Policy recommendations ␣␣Increased adoption of agroforestry should be supported through finance for agricultural development and adaptation as well as mitigation. ␣␣Payments for environmental services – including carbon finance – should be geared towards increasing the extent of trees on farms ␣ More support is needed to increase the contribution of tree-based crops to smallholder incomes, thus diversifying income sources and increasing food security in the face of climate change.
Located in Resources / Climate Science Documents