Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
62 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Ecohydrologic separation of water between trees and streams in a Mediterranean climate
Water movement in upland humid watersheds from the soil surface to the stream is often described using the concept of translatory flow (1,2), which assumes that water entering the soil as precipitation displaces the water that was present previously, pushing it deeper into the soil and eventually into the stream (2). Within this framework, water at any soil depth is well mixed and plants extract the same water that eventually enters the stream. Here we present water-isotope data from various pools throughout a small watershed in the Cascade Mountains, Oregon, USA. Our data imply that a pool of tightly bound water that is retained in the soil and used by trees does not participate in translatory flow, mix with mobile water or enter the stream. Instead, water from initial rainfall events after rainless summers is locked into small pores with low matric potential until transpiration empties these pores during following dry summers. Winter rainfall does not displace this tightly bound water. As transpiration and stormflow are out of phase in the Mediterranean climate of our study site, two separate sets of water bodies with different isotopic characteristics exist in trees and streams. We conclude that complete mixing of water within the soil cannot be assumed for similar hydroclimatic regimes as has been done in the past (3,4) .
Located in Resources / Climate Science Documents
File PDF document Ecological and Evolutionary Responses to Recent Climate Change
Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
Located in Resources / Climate Science Documents
File PDF document Ecosystem Processes and Human Influences Regulate Streamflow Response to Climate Change at Long-Term Ecological Research Sites
Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-deficit ecosystems. Streamflow was correlated with climate variability indices (e.g., the El Niño–Southern Oscillation, the Pacific Decadal Oscillation, the North Atlantic Oscillation), especially in seasons when vegetation influences are limited. Air temperature increased significantly at 17 of the 19 sites with 20- to 60-year records, but streamflow trends were directly related to climate trends (through changes in ice and snow) at only 7 sites. Past and present human and natural disturbance, vegetation succession, and human water use can mimic, exacerbate, counteract, or mask the effects of climate change on streamflow, even in reference basins. Long-term ecological research sites are ideal places to disentangle these processes.
Located in Resources / Climate Science Documents
File PDF document Editorial : Half-hearted engineering
Climate warming is not the only consequence of rising levels of atmospheric greenhouse gases. The only way to counter all effects, including those on rainfall and ocean acidity, is to remove carbon from the climate system. Arguably, some of the most immediate impacts of a warming climate will result from shifts in global rainfall patterns. The potential threats are diverse, and include water scarcity in the lush Amazonian rainforest; increased drought in the already parched southwestern United States; rainfall replacing snow in low-latitude mountain regions; and a rise in flooding in temperate climates. Whatever the exact outcome of these threats, the stability of the world’s economy and ecosystem both depend on maintaining precipitation patterns more or less as they are today.
Located in Resources / Climate Science Documents
File PDF document Effects of Urbanization and Climate Change on Stream Health
Estimation of stream health involves the analysis of changes in aquatic species, riparian vegetation, microinvertebrates, and channel degradation due to hydrologic changes occurring from anthropogenic activities. In this study, we quantified stream health changes arising from urbanization and climate change using a combination of the widely accepted Indicators of Hydrologic Alteration (IHA) and Dundee Hydrologic Regime Assessment Method (DHRAM) on a rapidly urbanized watershed in the Dallas-Fort Worth metropolitan area in Texas. Historical flow data were split into pre-alteration and post-alteration periods. The influence of climate change on stream health was analyzed by dividing the precipitation data into three groups of dry, average, and wet conditions based on recorded annual precipitation. Hydrologic indicators were evaluated for all three of the climate scenarios to estimate the stream health changes brought about by climate change. The effect of urbanization on stream health was analyzed for a specific subwatershed where urbanization occurred dramatically but no stream flow data were available using the widely used watershed-scale Soil and Water Assessment Tool (SWAT) model. The results of this study identify negative impacts to stream health with increasing urbanization and indicate that dry weather has more impact on stream health than wet weather. The IHA-DHRAM approach and SWAT model prove to be useful tools to estimate stream health at the watershed scale.
Located in Resources / Climate Science Documents
File PDF document Elevation-dependent influence of snow accumulation on forest greening
Rising temperatures and declining water availability have influenced the ecological function of mountain forests over the past half-century. For instance, warming in spring and summer and shifts towards earlier snowmelt are associated with an increase in wildfire activity and tree mortality in mountain forests in the western United States (1,2). Temperature increases are expected to continue during the twenty-first century in mountain ecosystems across the globe (3,4), with uncertain consequences. Here, we examine the influence of interannual variations in snowpack accumulation on forest greenness in the Sierra Nevada Mountains, California, between 1982 and 2006. Using observational records of snow accumulation and satellite data on vegetation greenness we show that vegetation greenness increases with snow accumulation. Indeed, we show that variations in maximum snow accumulation explain over 50% of the interannual variability in peak forest greenness across the Sierra Nevada region. The extent to which snow accumulation can explain variations in greenness varies with elevation, reaching a maximum in the water-limited mid- elevations, between 2,000 and 2,600 m. In situ measurements of carbon uptake and snow accumulation along an elevational transect in the region confirm the elevation dependence of this relationship. We suggest that mid-elevation mountain forest ecosystems could prove particularly sensitive to future increases in temperature and concurrent changes in snow accumulation and melt.
Located in Resources / Climate Science Documents
Engaging Conservation Partnerships in the Vital Chesapeake Bay Watershed
Over the last two months, Coordinator Jean Brennan has worked with partners in the Chesapeake Conservation Partnership and Chesapeake Watershed Forum to introduce many to the diversity of LCC science products and tools that can benefit their important conservation work in this vital watershed.
Located in News & Events
File PDF document EPA and the Army Corps’ Proposed Rule to Define “Waters of the United States”
Excerpt from summary : According to the agencies, the proposed rule would revise the existing regulatory definition of “waters of the United States” consistent with legal rulings—especially the Supreme Court cases—and science concerning the interconnectedness of tributaries, wetlands, and other waters to downstream waters and effects of these connections on the chemical, physical, and biological integrity of downstream waters. Waters that are “jurisdictional” are subject to the multiple regulatory requirements of the CWA: standards, discharge limitations, permits, and enforcement. Non-jurisdictional waters, in contrast, do not have the federal legal protection of those requirements. This report describes the March 25 proposed rule and includes a table comparing the existing regulatory language that defines “waters of the United States” with that in the proposal.
Located in Resources / Climate Science Documents
File Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge
The importance of dead wood for biodiversity is widely recognized but strategies for conservation exist only in some regions worldwide. Most strategies combine knowledge from observational and experimental studies but remain preliminary as many facets of the complex relationships are unstudied. In this first global review of 79 experimental studies addressing biodiversity patterns in dead wood, we identify major knowledge gaps and aim to foster collaboration among researchers by providing a map of previous and ongoing experiments. We show that research has focused primarily on temperate and boreal forests, where results have helped in developing evidence-based conservation strategies, whereas comparatively few such efforts have been made in subtropical or tropical zones. Most studies have been limited to early stages of wood decomposition and many diverse and functionally important saproxylic taxa, e.g., fungi, flies and termites, remain under-represented. Our meta-analysis confirms the benefits of dead-wood addition for biodiversity, particularly for saproxylic taxa, but shows that responses of non-saproxylic taxa are heterogeneous. Our analysis indicates that global conservation of organisms associated with dead wood would benefit most by prioritizing research in the tropics and other neglected regions, focusing on advanced stages of wood decomposition and assessing a wider range of taxa. By using existing experimental set-ups to study advanced decay stages and additional taxa, results could be obtained more quickly and with less effort compared to initiating new experiments.
Located in Resources / Climate Science Documents
File Global change and the groundwater management challenge
With rivers in critical regions already exploited to capacity throughout the world and ground- water overdraft as well as large-scale contamination occurring in many areas, we have entered an era in which multiple simultaneous stresses will drive water management. Increasingly, groundwater resources are taking a more prominent role in providing freshwater supplies. We discuss the competing fresh ground- water needs for human consumption, food production, energy, and the environment, as well as physical hazards, and conflicts due to transboundary overexploitation. During the past 50 years, groundwater man- agement modeling has focused on combining simulation with optimization methods to inspect important problems ranging from contaminant remediation to agricultural irrigation management. The compound challenges now faced by water planners require a new generation of aquifer management models that address the broad impacts of global change on aquifer storage and depletion trajectory management, land subsidence, groundwater-dependent ecosystems, seawater intrusion, anthropogenic and geogenic contamination, supply vulnerability, and long-term sustainability. The scope of research efforts is only beginning to address complex interactions using multiagent system models that are not readily formulated as optimization problems and that consider a suite of human behavioral responses.
Located in Resources / Climate Science Documents