Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
96 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document A megacity in a changing climate: the case of Kolkata
Projections by the Intergovernmental Panel on Climate Change suggest that there will be an increase in the frequency and intensity of climate extremes in the 21st century. Kolkata, a megacity in India, has been singled out as one of the urban centers vulnerable to climate risks. Modest flooding during monsoons at high tide in the Hooghly River is a recurring hazard in Kolkata. More intense rainfall, riverine flooding, sea level rise, and coastal storm surges in a changing climate can lead to widespread and severe flooding and bring the city to a standstill for several days. Using rainfall data, high and low emissions scenarios, and sea level rise of 27 cm by 2050, this paper assesses the vulnerability of Kolkata to increasingly intense precipitation events for return periods of 30, 50, and 100 years. It makes location-specific inundation depth and duration projections using hydrological, hydraulic, and urban storm models with geographic overlays. High resolution spatial analysis provides a roadmap for designing adaptation schemes to minimize the impacts of climate change. The modeling results show that de-silting of the main sewers would reduce vulnerable population estimates by at least 5 %.
Located in Resources / Climate Science Documents
File PDF document A statistical procedure to determine recent climate change of extreme daily meteorological data as applied at two locations in Northwestern North America
An iterative chi-square method is applied to determine recent climate change of extremes of daily minimum temperature at two locations between an 18- year recent period and a 36-year prior period. The method determines for each of two locations in northwestern North America, Bozeman, Montana, USA and Coldstream, British Columbia, Canada, which values of the extreme daily weather elements are most significantly different between the prior years and the recent years and gives a measure of the weekly significance of that difference. Determination was made of the average percent of each recent year date (plotted weekly) that was im- pacted by extreme weather due to climate change as well as the percentage change in the frequency of the number of extreme days for each period of contiguous significant weeks. During the recent period at both locations, most weeks experienced a greater number of days of extreme high minimum temperature and a fewer number of days of extreme low minimum temperature. The weekly percentage changes indicate that extreme high minimum temperatures at both Bozeman and Coldstream are increasing at the rate of about 10% per decade, with a close corresponding decrease of extreme low minimum temperatures. The major changes in climate were very similar at both locations, with greatest warming occurring during the late winter and early spring and during the late July to August period.
Located in Resources / Climate Science Documents
File PDF document A century of climate and ecosystem change in Western Montana: what do temperature trends portend?
Abstract The physical science linking human-induced increases ingreenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., −17.8◦C (0◦F), 0◦C (32◦F), and 32.2◦C (90◦F)) are assessed. The daily temperature time series reveal extremely cold days (≤ −17.8◦C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (≥32◦C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0◦C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana’s ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes.
Located in Resources / Climate Science Documents
File PDF document Differences and sensitivities in potential hydrologic impact of climate change to regional-scale Athabasca and Fraser River basins of the leeward and windward sides of the Canadian Rocky Mountains respectively
Sensitivities to the potential impact of Climate Change on the water resources of the Athabasca River Basin (ARB) and Fraser River Basin (FRB) were investigated. The Special Report on Emissions Scenarios (SRES) of IPCC projected by seven general circulation models (GCM), namely, Japan’s CCSRNIES, Canada’s CGCM2, Australia’s CSIROMk2b, Germany’s ECHAM4, the USA’s GFDLR30, the UK’s HadCM3, and the USA’s NCARPCM, driven under four SRES climate scenarios (A1FI, A2, B1, and B2) over three 30-year time periods (2010–2039, 2040– 2069, 2070–2100) were used in these studies. The change fields over these three 30-year time periods are assessed with respect to the 1961–1990, 30-year climate normal and based on the 1961–1990 European Community Mid-Weather Forecast (ECMWF) re-analysis data (ERA-40), which were adjusted with respect to the higher resolution GEM forecast archive of Environment Canada, and used to drive the Modified ISBA (MISBA) of Kerkhoven and Gan (Adv Water Resour 29(6):808– 826, 2006). In the ARB, the shortened snowfall season and increased sublimation together lead to a decline in the spring snowpack, and mean annual flows are expected to decline with the runoff coefficient dropping by about 8% per ◦C rise in temperature. Although the wettest scenarios predict mild increases in annual runoff in the first half of the century, all GCM and emission combinations predict large declines by the end of the twenty-first century with an average change in the annual runoff, mean maximum annual flow and mean minimum annual flow of −21%, −4.4%, and −41%, respectively. The climate scenarios in the FRB present a less clear picture of streamflows in the twenty-first century. All 18 GCM projections suggest mean annual flows in the FRB should change by ±10% with eight projections suggesting increases and 10 projecting decreases in the mean annual flow. This stark contrast with the ARB results is due to the FRB’s much milder climate. Therefore under SRES scenarios, much of the FRB is projected to become warmer than 0◦C for most of the calendar year, resulting in a decline in FRB’s characteristic snow fed annual hydrograph response, which also results in a large decline in the average maximum flow rate. Generalized equations relating mean annual runoff, mean annual minimum flows, and mean annual maximum flows to changes in rainfall, snowfall, winter temperature, and summer temperature show that flow rates in both basins are more sensitive to changes in winter than summer temperature.
Located in Resources / Climate Science Documents
File PDF document Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes
Thermal regimes in rivers and streams are fundamentally important to aquatic ecosystems and are expected to change in response to climate forcing as the Earth’s temperature warms. Description and attribution of stream temperature changes are key to understanding how these ecosystems may be affected by climate change, but difficult given the rarity of long-term monitoring data. We assembled 18 temperature time-series from sites on regulated and unregulated streams in the northwest U.S. to describe historical trends from 1980–2009 and assess thermal consistency between these stream categories. Statistically significant temperature trends were detected across seven sites on unregulated streams during all seasons of the year, with a cooling trend apparent during the spring and warming trends during the summer, fall, and winter. The amount of warming more than compensated for spring cooling to cause a net temperature increase, and rates of warming were highest during the summer (raw trend = 0.17°C/decade; reconstructed trend = 0.22°C/decade). Air temperature was the dominant factor explaining long-term stream temperature trends (82–94% of trends) and inter-annual variability (48–86% of variability), except during the summer when discharge accounted for approximately half (52%) of the inter-annual variation in stream temperatures. Seasonal temperature trends at eleven sites on regulated streams were qualitatively similar to those at unregulated sites if two sites managed to reduce summer and fall temperatures were excluded from the analysis. However, these trends were never statistically significant due to greater variation among sites that resulted from local water management policies and effects of upstream reservoirs. Despite serious deficiencies in the stream temperature monitoring record, our results suggest many streams in the northwest U.S. are exhibiting a regionally coherent response to climate forcing. More extensive monitoring efforts are needed as are techniques for short-term sensitivity analysis and reconstructing historical temperature trends so that spatial and temporal patterns of warming can be better understood. Continuation of warming trends this century will increasingly stress important regional salmon and trout resources and hamper efforts to recover these species, so comprehensive vulnerability assessments are needed to provide strategic frameworks for prioritizing conservation efforts.
Located in Resources / Climate Science Documents
File PDF document Climate change hotspots in the United States
We use a multi-model, multi-scenario climate model ensemble to identify climate change hotspots in the continental United States. Our ensemble consists of the CMIP3 atmosphere-ocean general circulation models, along with a high-resolution nested climate modeling system. We test both high (A2) and low (B1) greenhouse gas emissions trajectories, as well as two different statistical metrics for identifying regional climate change hotspots. We find that the pattern of peak responsiveness in the CMIP3 ensemble is persistent across variations in GHG concentration, GHG trajectory, and identification method. Areas of the southwestern United States and northern Mexico are the most persistent hotspots. The high-resolution climate modeling system produces highly localized hotspots within the basic GCM structure, but with a higher sensitivity to the identification method. Across the ensemble, the pattern of relative climate change hotspots is shaped primarily by changes in interannual variability of the contributing variables rather than by changes in the long-term mean
Located in Resources / Climate Science Documents
File PDF document Experimental climate change weakens the insurance effect of biodiversity
Ecosystems are simultaneously affected by biodiversity loss and climate change, but we know little about how these factors interact. We predicted that climate warming and CO2-enrichment should strengthen trophic cascades by reducing the relative efficiency of predation-resistant herbivores, if herbivore consumption rate trades off with predation resistance. This weakens the insurance effect of herbivore diversity. We tested this prediction using experimental ocean warming and acidification in seagrass mesocosms. Metaanalyses of published experiments first indicated that consumption rate trades off with predation resistance. The experiment then showed that three common herbivores together controlled macroalgae and facilitated seagrass dominance, regardless of climate change. When the predation-vulnerable herbivore was excluded in normal conditions, the two resistant herbivores maintained top-down control. Under warming, however, increased algal growth outstripped control by herbivores and the system became algal-dominated. Consequently, climate change can reduce the relative efficiency of resistant herbivores and weaken the insurance effect of biodiversity.
Located in Resources / Climate Science Documents
File PDF document Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA
Climate change is expected to increase disturbances such as stand-replacing wildfire in many ecosystems, which have the potential to drive rapid turnover in ecological communities. Ecosystem recovery, and therefore maintenance of critical structures and functions (resilience), is likely to vary across environmental gradients such as moisture availability, but has received little study. We examined conifer regeneration a decade following complete stand-replacing wildfire in dry coniferous forests spanning a 700 m elevation gradient where low elevation sites had relatively high moisture stress due to the combination of high temperature and low precipitation. Conifer regeneration varied strongly across the elevation gradient, with little tree regeneration at warm and dry low elevation sites. Logistic regression models predicted rapid increases in regeneration across the elevation gradient for both seedlings of all conifer species and ponderosa pine seedlings individually. This pattern was especially pronounced for well-established seedlings (P38 cm in height). Graminoids dominated lower elevation sites following wildfire, which may have added to moisture stress for seedlings due to competition for water. These results suggest moisture stress can be a critical factor limiting conifer regeneration following stand- replacing wildfire in dry coniferous forests, with predicted increases in temperature and drought in the coming century likely to increase the importance of moisture stress. Strongly moisture limited forested sites may fail to regenerate for extended periods after stand-replacing disturbance, suggesting these sites are high priorities for management intervention where maintaining forests is a priority.
Located in Resources / Climate Science Documents
File PDF document A dispersal-induced paradox: synchrony and stability in stochastic metapopulations
Understanding how dispersal influences the dynamics of spatially distributed populations is a major priority of both basic and applied ecologists. Two well-known effects of dispersal are spatial synchrony (positively correlated population dynamics at different points in space) and dispersal-induced stability (the phenomenon whereby populations have simpler or less extinction-prone dynamics when they are linked by dispersal than when they are isolated). Although both these effects of dispersal should occur simultaneously, they have primarily been studied separately. Herein, I summarise evidence from the literature that these effects are expected to interact, and I use a series of models to characterise that interaction. In particular, I explore the observation that although dispersal can promote both synchrony and stability singly, it is widely held that synchrony paradoxically prevents dispersal-induced stability. I show here that in many realistic scenarios, dispersal is expected to promote both synchrony and stability at once despite this apparent destabilising influence of synchrony. This work demonstrates that studying the spatial and temporal impacts of dispersal together will be vital for the conservation and management of the many communities for which human activities are altering natural dispersal rates. Keywords Autoregressive model, correlated environmental stochasticity, dispersal, dispersal-induced stability, metapopulation, negative binomial model, Ricker model, spatial heterogeneity, synchrony.
Located in Resources / Climate Science Documents
File PDF document Biodiversity effects on ecosystem functioning change along environmental stress gradients
Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity–ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems.
Located in Resources / Climate Science Documents