Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
16 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File Troff document Q3 2013 Progress Report
Progress Report for 3rd Quarter, 2013
Located in Research / / Quarterly Reports Folder / Q3 2013 Reporting Materials and Comments
Reviewing the Literature on Freshwater Classification Frameworks
A “Literature Review of Freshwater Classification Frameworks” by Principle Investigators at The Nature Conservancy and Oak Ridge National Laboratory reviewed aquatic and hydrological classifications and frameworks that have been developed at a variety of spatial scales and evaluates which could be applied for use by the Cooperative.
Located in News & Events
File text/texmacs Seeing the landscape for the trees: Metrics to guide riparian shade management in river catchments
Rising water temperature (Tw) due to anthropogenic climate change may have serious conse- quences for river ecosystems. Conservation and/or expansion of riparian shade could counter warming and buy time for ecosystems to adapt. However, sensitivity of river reaches to direct solar radiation is highly het- erogeneous in space and time, so benefits of shading are also expected to be site specific. We use a network of high-resolution temperature measurements from two upland rivers in the UK, in conjunction with topo- graphic shade modeling, to assess the relative significance of landscape and riparian shade to the thermal behavior of river reaches. Trees occupy 7% of the study catchments (comparable with the UK national aver- age) yet shade covers 52% of the area and is concentrated along river corridors. Riparian shade is most ben- eficial for managing Tw at distances 5–20 km downstream from the source of the rivers where discharge is modest, flow is dominated by near-surface hydrological pathways, there is a wide floodplain with little land- scape shade, and where cumulative solar exposure times are sufficient to affect Tw. For the rivers studied, we find that approximately 0.5 km of complete shade is necessary to off-set Tw by 18C during July (the month with peak Tw) at a headwater site; whereas 1.1 km of shade is required 25 km downstream. Further research is needed to assess the integrated effect of future changes in air temperature, sunshine duration, direct solar radiation, and downward diffuse radiation on Tw to help tree planting schemes achieve
Located in Resources / Climate Science Documents
File PDF document Sour Streams in Appalachia: Mapping Nature’s Buffer Against Sulfur Deposition
Sulfur emissions are regulated by the Environmental Protection Agency, but sulfuric acid that has leached into soil and streams can linger in the environment and harm vegetation and aquatic life. Some watersheds are better able to buffer streams against acidification than others; scientists learned why in southern Appalachia.
Located in Resources / Climate Science Documents
Person Starr, Richard
Watershed and stream function-based assessment, stream restoration design, stream restoration monitoring, stream restoration implementation, and stream training
Located in Expertise Search
Stream Classification System for the Appalachian LCC
Located in Research / Funded Projects