Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
76 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
Appalachian Naturescape
Well-connected landscapes are necessary to sustain many of the natural and cultural resources important to the Appalachian region. Appalachian NatureScape is a dynamic conservation planning resource that brings together data and perspectives of experts and committed stakeholders.
AppLCC and FWS Host Marxan Workshop
The Appalachian LCC and Virginia Field Office of the U.S. Fish and Wildlife Service jointly hosted a two-day Marxan learning session on February 3rd and 4th, 2015 at the National Conservation Training Center in Shepherdstown, West Virginia.
Located in News & Events
AppLCC LCD Phase II Aquatic Expert Consultations
The Appalachian LCC consultations with aquatic experts on our Landscape Conservation Design moves next week to the second discussion about aquatic metrics, models and data.
Located in News & Events / Events
File Applying ecological criteria to marine reserve design: A case study from the California Channel Islands
Reference which describes the steps involved in designing a network of marine reserves for conservation and fisheries management.
Located in Technical Resources / / Marxan Training Resources / Marxan Training Suggested Readings
Applying LCC Tools to Issues Impacting the Keystone State
Pennsylvania is a landscape filled with abundant forests and wildlife, thousands of miles of rivers and streams, and home to a productive energy industry that includes the emergence of natural gas and alternative energy sources. Natural resource agencies and conservation organizations increasingly see the value for proactive science and tools that help inform decisions both locally and regionally in order to best protect and conserve the lands, waters, and wildlife of the state while harnessing resources that benefit society and the economy.
Located in News & Events
File PDF document Are conservation organizations configured for effective adaptation to global change?
Conservation organizations must adapt to respond to the ecological impacts of global change. Numerous changes to conservation actions (eg facilitated ecological transitions, managed relocations, or increased corridordevelopment) have been recommended, but some institutional restructuring within organizations may also be needed. Here we discuss the capacity of conservation organizations to adapt to changing environmental conditions, focusing primarily on public agencies and nonprofits active in land protection and management in the US. After first reviewing how these organizations anticipate and detect impacts affecting target species and ecosystems, we then discuss whether they are sufficiently flexible to prepare and respond by reallocating funding, staff, or other resources. We raise new hypotheses about how the configuration of different organizations enables them to protect particular conservation targets and manage for particular biophysical changes that require coordinated management actions over different spatial and temporal scales. Finally, we provide a discussion resource to help conservation organizations assess their capacity to adapt.
Located in Resources / Climate Science Documents
File PDF document Area–heterogeneity tradeoff and the diversity of ecological communities
For more than 50 y ecologists have believed that spatial heterogeneity in habitat conditions promotes species richness by increasing opportunities for niche partitioning. However, a recent stochastic model combining the main elements of niche theory and island biogeography theory suggests that environmental heterogeneity has a general unimodal rather than a positive effect on species richness. This result was explained by an inherent tradeoff between environmental heterogeneity and the amount of suitable area available for individual species: for a given area, as heterogeneity increases, the amount of effective area available for individual species decreases, thereby reducing population sizes and increasing the likelihood of stochastic extinctions. Here we provide a comprehensive evaluation of this hypothesis. First we analyze an extensive database of breeding bird distribution in Catalonia and show that patterns of species richness, species abundance, and extinction rates are consistent with the predictions of the area–heterogeneity tradeoff and its proposed mechanisms. We then perform a metaanalysis of heterogeneity–diversity relationships in 54 published datasets and show that empirical data better fit the unimodal pattern predicted by the area–heterogeneity tradeoff than the positive pattern predicted by classic niche theory. Simulations in which species may have variable niche widths along a continuous environmental gradient are consistent with all empirical findings. The area–heterogeneity tradeoff brings a unique perspective to current theories of species diversity and has important implications for biodiversity conservation.
Located in Resources / Climate Science Documents
File PDF document Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss
The extent to which biodiversity change in local assemblages contributes to global biodiversity loss is poorly understood. We analyzed 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time. We quantified patterns of temporal a diversity, measured as change in local diversity, and temporal b diversity, measured as change in community composition. Contrary to our expectations, we did not detect systematic loss of a diversity. However, community composition changed systematically through time, in excess of predictions from null models. Heterogeneous rates of environmental change, species range shifts associated with climate change, and biotic homogenization may explain the different patterns of temporal a and b diversity. Monitoring and understanding change in species composition should be a conservation priority.
Located in Resources / Climate Science Documents
File PDF document Assessing potential climate change effects on vegetation using a linked model approach
We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure. Our results suggest that: (1) legacy effects incorporated in state-and-transition models realistically dampen climate change effects on vegetation; (2) species-specific response to fire built into state-and- transition models can result in increased resistance to climate change, as was the case for ponderosa pine (Pinus ponderosa) forests, or increased sensitivity to climate change, as was the case for some shrublands and grasslands in the study area; and (3) vegetation could remain relatively stable in the short term, then shift rapidly as a consequence of increased disturbance such as wildfire and altered environmental conditions. Managers and other land stewards can use results from our linked models to better anticipate potential climate-induced shifts in local vegetation and resulting effects on wildlife habitat.
Located in Resources / Climate Science Documents
File PDF document Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally
It is possible that anthropogenic climate change will drive the Earth system into a qualitatively different state1. Although different types of uncertainty limit our capacity to assess this risk 2, Earth system scientists are particularly concerned about tipping elements, large-scale components of the Earth system that can be switched into qualitatively different states by small perturbations. Despite growing evidence that tipping elements exist in the climate system1,3, whether large-scale vegetation systems can tip into alternative states is poorly understood4. Here we show that tropical grassland, savanna and forest ecosystems, areas large enough to have powerful impacts on the Earth system, are likely to shift to alternative states. Specifically, we show that increasing atmospheric CO2 concentration will force transitions to vegetation states characterized by higher biomass and/or woody-plant dominance. The timing of these critical transitions varies as a result of between-site variance in the rate of temperature increase, as well as a dependence on stochastic variation in fire severity and rainfall. We further show that the locations of bistable vegetation zones (zones where alternative vegetation states can exist) will shift as climate changes. We conclude that even though large-scale directional regime shifts in terrestrial ecosystems are likely, asynchrony in the timing of these shifts may serve to dampen, but not nullify, the shock that these changes may represent to the Earth system.
Located in Resources / Climate Science Documents