Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
148 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Protected areas in Borneo may fail to conserve tropical forest biodiversity under climate change
Protected areas (PAs) are key for conserving rainforest species, but many PAs are becoming increasingly isolated within agricultural landscapes, which may have detrimental consequences for the forest biota they contain. We examined the vulnerability of PA networks to climate change by examining connectivity of PAs along elevation gradients. We used the PA network on Borneo as a model system, and examined changes in the spatial distribution of climate conditions in future. A large proportion of PAs will not contain analogous climates in future (based on temperature projections for 2061–2080), potentially requiring organisms to move to cooler PAs at higher elevation, if they are to track climate changes. For the highest warming scenario (RCP8.5), few (11–12.5%; 27–30/240) PAs were sufficiently topographically diverse for analogous climate conditions (present-day equivalent or cooler) to remain in situ. For the remaining 87.5–89% (210–213/240) of PAs, which were often situated at low elevation, analogous climate will only be available in higher elevation PAs. However, over half (60–82%) of all PAs on Borneo are too isolated for poor dispersers (<1 km per generation) to reach cooler PAs, because there is a lack of connecting forest habitat. Even under the lowest warming scenario (RCP2.6), analogous climate conditions will disappear from 61% (146/240) of PAs, and a large proportion of these are too isolated for poor dispersers to reach cooler PAs. Our results suggest that low elevation PAs are particularly vulnerable to climate change, and management to improve linkage of PAs along elevation gradients should be a conservation priority
Located in Resources / Climate Science Documents
File Reform forest fire management: Agency incentives undermine policy effectiveness
Globally, wildfire size, severity, and frequency have been increasing, as have related fatalities and taxpayer- funded firefighting costs (1). In most accessible forests, wildfire response prioritizes suppression because fires are easier and cheaper to contain when small (2). In the United States, for example, 98% of wildfires are suppressed before reaching 120 ha in size (3). But the 2% of wildfires that escape containment often burn under extreme weather conditions in fuel-loaded forests and account for 97% of fire-fighting costs and total area burned (3). Changing climate and decades of fuel accumulation make efforts to suppress every fire dangerous, expensive, and ill advised (4).
Located in Resources / Climate Science Documents
Video Regenerative Agriculture: No-Till Farming
Gabe Brown, legendary Rancher from Bismarck, North Dakota, discusses how Regenerative Agriculture is a solution to local and global challenges.
Located in Training Resources / Webinars and Instructional Videos
Researchers Seek a Sneak Peek Into the Future of Forests
In May 2015, scores of scientists from dozens of research institutions descended on a patch of forest in central North Carolina, taking samples of everything from ants and mites to other microbes – samples they hope will offer a glimpse into the future of forest ecosystems.
Located in News & Events
Riparian Restoration Decision Support Tool
An innovative riparian planting and restoration decision support tool is now available to the conservation community. This user-friendly tool allows managers and decision-makers to rapidly identify and prioritize areas along the banks of rivers, streams, and lakes for restoration, making these ecosystems more resilient to disturbance and future changes in climate. It will also help the conservation community invest limited conservation dollars wisely, helping to deliver sustainable resources.
Located in Tools & Resources
Riparian Restoration Decision Support Tool
An innovative riparian planting and restoration decision support tool is now available to the conservation community. This user-friendly tool allows managers and decision-makers to rapidly identify and prioritize areas along the banks of rivers, streams, and lakes for restoration, making these ecosystems more resilient to disturbance and future changes in climate. It will also help the conservation community invest limited conservation dollars wisely, helping to deliver sustainable resources.
Located in Tools & Resources
Video application/x-troff-ms Riparian Restoration to Promote Climate Change Resilience in Eastern U.S. Streams
This presentation from Jason Coombs of the University of Massachusetts provides an update to the Steering Committee on this Appalachian LCC funded research project. The Riparian Restoration to Promote Climate Change Resilience in Eastern U.S. Streams is developing and implementing a user-friendly web-based tool to identify priority areas for riparian restoration in the context of predicted climate change at the appropriate scale needed by practitioners. A ‘shovel ready’ prioritization tool for managers facing immediate on-the-ground decisions will be developed. Then research will link directly to ongoing and future stream flow, temperature, and biological response modeling projects and decision support tools.
Located in Cooperative / / Past SC Meetings and Materials / Steering Committee Call 3/6/14
Video Octet Stream Salamanders - The Hidden Jewels of Appalachia
If you want to hit paydirt the Appalachian region is the world’s salamander El Dorado—home to over 70 salamander species. The Appalachian region of the eastern United States is the world's epicenter for salamander biodiversity.
Located in Training / Videos and Webinars
Scientists: Strong evidence that human-caused climate change intensified 2015 heat waves
Human-caused climate change very likely increased the severity of heat waves that plagued India, Pakistan, Europe, East Africa, East Asia, and Australia in 2015 and helped make it the warmest year on record, according to new research published today in a special edition of the Bulletin of the American Meteorological Society.
Located in News & Events
File text/texmacs Seeing the landscape for the trees: Metrics to guide riparian shade management in river catchments
Rising water temperature (Tw) due to anthropogenic climate change may have serious conse- quences for river ecosystems. Conservation and/or expansion of riparian shade could counter warming and buy time for ecosystems to adapt. However, sensitivity of river reaches to direct solar radiation is highly het- erogeneous in space and time, so benefits of shading are also expected to be site specific. We use a network of high-resolution temperature measurements from two upland rivers in the UK, in conjunction with topo- graphic shade modeling, to assess the relative significance of landscape and riparian shade to the thermal behavior of river reaches. Trees occupy 7% of the study catchments (comparable with the UK national aver- age) yet shade covers 52% of the area and is concentrated along river corridors. Riparian shade is most ben- eficial for managing Tw at distances 5–20 km downstream from the source of the rivers where discharge is modest, flow is dominated by near-surface hydrological pathways, there is a wide floodplain with little land- scape shade, and where cumulative solar exposure times are sufficient to affect Tw. For the rivers studied, we find that approximately 0.5 km of complete shade is necessary to off-set Tw by 18C during July (the month with peak Tw) at a headwater site; whereas 1.1 km of shade is required 25 km downstream. Further research is needed to assess the integrated effect of future changes in air temperature, sunshine duration, direct solar radiation, and downward diffuse radiation on Tw to help tree planting schemes achieve
Located in Resources / Climate Science Documents