Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
148 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Forecasting the response of Earth’s surface to future climatic and land use changes: A review of methods and research needs
In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth’s surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.
Located in Resources / Climate Science Documents
File Global non-linear effect of temperature on economic production
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies (1,2), but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries (3,4). In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature (5), while poor countries respond only linearly (5,6). Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human–natural systems (7,8) and to anticipating the global impact of climate change (9,10). Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non- linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 6C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change (11,12), with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Located in Resources / Climate Science Documents
File PDF document Growing feedback from ocean carbon to climate
The finding that feedbacks between the ocean’s carbon cycle and climate may become larger than terrestrial carbon–climate feedbacks has implications for the socio-economic effects of today’s fossil-fuel emissions.
Located in Resources / Climate Science Documents
File PDF document Invited Review: Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities
By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region.
Located in Resources / Climate Science Documents
Managing for Species Adaptive Capacity
A new paper authored by researchers at federal agencies, regional partnerships, and universities, including Appalachian LCC Coordinator and Senior Scientist Dr. Jean Brennan, proposes a new conceptual paradigm for adaptive capacity.
Located in News & Events
File ECMAScript program Novel climates, no-analog communities, and ecological surprises
No-analog communities (communities that are compositionally unlike any found today) occurred frequently in the past and will develop in the greenhouse world of the future. The well documented no-analog plant communities of late-glacial North America are closely linked to “novel” climates also lacking modern analogs, characterized by high seasonality of temperature. In climate simulations for the Intergovernmental Panel on Climate Change A2 and B1 emission scenarios, novel climates arise by 2100 AD, primarily in tropical and subtropical regions. These future novel climates are warmer than any present climates globally, with spatially variable shifts in precipitation, and increase the risk of species reshuffling into future no-analog communities and other ecological surprises. Most ecological models are at least partially parameterized from modern observations and so may fail to accurately predict ecological responses to these novel climates. There is an urgent need to test the robustness of ecological models to climate conditions outside modern experience.
Located in Resources / Climate Science Documents
File ECMAScript program On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States
The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight-year-long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co-located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (DNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspira- tion (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variabil- ity in DNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long-time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines.
Located in Resources / Climate Science Documents
Online Screening of "One Stick at a Time
This film follows land managers in the Methow Valley, Washington for over a year, from forests to rivers, from fires to snowfall, from beaver capture to release as they try to come to grips with the impacts of climate change and the possible adaptation options right in front of them.
Located in News & Events / Events
File text/texmacs Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests
Wildfires play a key role in the boreal forest carbon cycle(1,2), and models suggest that accelerated burning will increase boreal C emissions in the coming century (3). However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions (4). We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan bo- real forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m?2(12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m?2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections (7) point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions (8) that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.
Located in Resources / Climate Science Documents
File PDF document Predicting a change in the order of spring phenology in temperate forests
The rise in spring temperatures over the past half-century has led to advances in the phenology of many nontropical plants and animals. As species and populations differ in their phenological responses to temperature, an increase in temperatures has the potential to alter timing-dependent species interactions. One species-interaction that may be affected is the competition for light in deciduous forests, where early vernal species have a narrow window of opportunity for growth before late spring species cast shade. Here we consider the Marsham phenology time series of first leafing dates of thirteen tree species and flowering dates of one ground flora species, which spans two centuries. The exceptional length of this time series permits a rare comparison of the statistical support for parameter-rich regression and mechanistic thermal sensitivity phenology models. While mechanistic models perform best in the majority of cases, both they and the regression models provide remarkably consistent insights into the relative sensitivity of each species to forcing and chilling effects. All species are sensitive to spring forcing, but we also find that vernal and northern European species are responsive to cold temperatures in the previous autumn. Whether this sensitivity reflects a chilling requirement or a delaying of dormancy remains to be tested. We then apply the models to projected future temperature data under a fossil fuel intensive emissions scenario and predict that while some species will advance substantially others will advance by less and may even be delayed due to a rise in autumn and winter temperatures. Considering the projected responses of all fourteen species, we anticipate a change in the order of spring events, which may lead to changes in competitive advantage for light with potential implications for the composition of temperate forests.
Located in Resources / Climate Science Documents