Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document ‘As Earth’s testimonies tell’: wilderness conservation in a changing world
Too often, wilderness conservation ignores a temporal perspective greater than the past 50 years, yet a long-term perspective (centuries to millennia) reveals the dynamic nature of many ecosystems. Analysis of fossil pollen, charcoal and stable isotopes, combined with historical analyses and archaeology can reveal how ongoing interactions between climatic change, human activities and other disturbances have shaped today’s landscapes over thousands of years. This interdisciplinary approach can inform wilderness conservation and also contribute to interpreting current trends and predicting how ecosystems might respond to future climate change. In this paper, we review literature that reveals how increasing collaboration among palaeoecologists, archaeologists, historians, anthropologists and ecologists is improving understanding of ecological complexity. Drawing on case studies from forested and non-forested ecosystems in Europe, the Americas, Africa and Australia, we discuss how this integrated approach can inform wilderness conservation and ecosystem management.
Located in Resources / Climate Science Documents
File PDF document A drought-induced pervasive increase in tree mortality across Canada’s boreal forests
Drought-induced tree mortality is expected to increase worldwide under projected future climate changes (1–4). The Canadian boreal forests, which occupy about 30% of the boreal forests worldwide and 77% of Canada’s total forested land, play a critical role in the albedo of Earth’s surface (5) and in its global carbon budget (6). Many of the previously reported regional-scale impacts of drought on tree mortality have affected low- and middle-latitude tropical regions (2) and the temperate forests of the western United States (3), but no study has examined high-latitude boreal regions with multiple species at a regional scale using long-term forest permanent sampling plots (7–9). Here, we estimated tree mortality in natural stands throughout Canada’s boreal forests using data from the permanent sampling plots and statistical models. We found that tree mortality rates increased by an overall average of 4.7%yr−1 from 1963 to 2008, with higher mortality rate increases in western regions than in eastern regions (about 4.9 and 1.9% yr−1 ,respectively).The water stress created by regional drought may be the dominant contributor to these widespread increases in tree mortality rates across tree species, sizes, elevations, longitudes and latitudes. Western Canada seems to have been more sensitive to drought than eastern Canada.
Located in Resources / Climate Science Documents
File PDF document 1.5°C or 2°C: a conduit’s view from the science-policy interface at COP20 in Lima, Peru
An average global 2°C warming compared to pre-industrial times is commonly understood as the most important target in climate policy negotiations. It is a temperature target indicative of a fiercely debated threshold between what some consider acceptable warming and warming that implies dangerous anthropogenic interference with the climate system and hence to be avoided. Although this 2°C target has been officially endorsed as scientifically sound and justified in the Copenhagen Report issued by the 15th Conference of the Parties (COP) of the United Nations Framework Convention on Climate Change (UNFCCC) in 2009, the large majority of countries (over two-thirds) that have signed and ratified the UNFCCC strongly object to this target as the core of the long-term goal of keeping temperatures below a certain danger level. Instead, they promote a 1.5°C target as a more adequate limit for dangerous interference. At COP16 in Cancun, parties to the convention recognized the need to consider strengthening the long-term global goal in the so-called 2013–2015 Review, given improved scientific knowledge, including the possible adoption of the 1.5°C target. In this perspective piece, I examine the discussions of a structured expert dialogue (SED) between selected Intergovernmental Panel on Climate Change (IPCC) authors, myself included, and parties to the convention to assess the adequacy of the long-term goal. I pay particular attention to the uneven geographies and power differentials that lay behind the ongoing political debate regarding an adequate target for protecting ecosystems, food security, and sustainable development.
Located in Resources / Climate Science Documents
File text/texmacs Interior Low Plateau subregion climate change vulnerability species assessments
These results are a compilation of climate change vulnerability assessments in the western portion of the LCC, covering the area from Western Kentucky, northeastern Alabama and western Tennessee west to southern Indiana and southeastern Illinois. Results included are from Bruno et al. (Cumberland Piedmont Network of the National Park Service; and Walk et al. 2011 (illinois). It also includes the results from species assessed as part of the current study (Sneddon et al. 2015).
Located in Research / / Assessing Vulnerability of Species and Habitats to Large-scale Impacts / Vulnerability Assessment Foundational Data by Subregion
File text/texmacs Interior Low Plateau subregion climate change vulnerability species assessments
These results are a compilation of climate change vulnerability assessments in the western portion of the LCC, covering the area from Western Kentucky, northeastern Alabama and western Tennessee west to southern Indiana and southeastern Illinois. Results included are from Bruno et al. (Cumberland Piedmont Network of the National Park Service; and Walk et al. 2011 (illinois). It also includes the results from species assessed as part of the current study (Sneddon et al. 2015).
Located in Vulnerability / Climate Change Vulnerability / Vulnerability Assessment Foundational Data by Subregion
File text/texmacs Central Appalachian subregion climate change vulnerability species assessments Excel Spreadsheet
These results are a compilation of climate change vulnerability assessments in the northern-most portion of the LCC, covering the area from New York south to West Virginia and Virginia, west to Pennsylvania and eastern Ohio. Results included are Byers and Norris 2011 (West Virginia); Furedi et al. 2011 (Pennsylvania), Ring et al. 2013 (New Jersey), Schlesinger et al. 2011 (New York); Virginia Division of Natural Heritage 2010 (Virginia). It also includes the results from species assessed as part of the current study (Sneddon et al. 2015).
Located in Research / / Assessing Vulnerability of Species and Habitats to Large-scale Impacts / Vulnerability Assessment Foundational Data by Subregion
File text/texmacs Central Appalachian subregion climate change vulnerability species assessments Excel Spreadsheet
These results are a compilation of climate change vulnerability assessments in the northern-most portion of the LCC, covering the area from New York south to West Virginia and Virginia, west to Pennsylvania and eastern Ohio. Results included are Byers and Norris 2011 (West Virginia); Furedi et al. 2011 (Pennsylvania), Ring et al. 2013 (New Jersey), Schlesinger et al. 2011 (New York); Virginia Division of Natural Heritage 2010 (Virginia). It also includes the results from species assessed as part of the current study (Sneddon et al. 2015).
Located in Vulnerability / Climate Change Vulnerability / Vulnerability Assessment Foundational Data by Subregion
File Troff document South-Central Interior Small Stream and Riparian Habitat
This habitat was assessed in both the Cumberland - Southern Appalachian subregion and the Interior Low Plateau subregion. Results are in the first two tabs of the spreadsheet. A description of the habitat, and a list of associated species, is included in the description tab. The remaining tabs describe the individual factors and their definitions. These results are in the review stage. Please send comments to lesley_sneddon@natureserve.org.
Located in Research / / Phase II: Vulnerability Assessments / Habitat Vulnerability Assessments
File Troff document South-Central Interior Small Stream and Riparian Habitat
This habitat was assessed in both the Cumberland - Southern Appalachian subregion and the Interior Low Plateau subregion. Results are in the first two tabs of the spreadsheet. A description of the habitat, and a list of associated species, is included in the description tab. The remaining tabs describe the individual factors and their definitions. These results are in the review stage. Please send comments to lesley_sneddon@natureserve.org.
Located in Vulnerability / / Phase II: Vulnerability Assessments / Habitat Vulnerability Assessments
BIG DATA as an engine for aquatic information creation
The smartest thing, the only thing really, we can do to conserve & preserve fisheries and aquatic biodiversity as the climate warms this century is to invest our limited resources wisely.
Located in News & Events