Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Gas production in the Barnett Shale obeys a simple scaling theory
Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States’ oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, in- dividually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet. hydrofracturing | shale gas | scaling laws | energy resources | fracking
Located in Resources / Climate Science Documents
File PDF document Hot climates, high sensitivity
Concluding paragraph: One sure solution to the problem posed by uncertainty of climate sensitivity in hot climates is simply not to go there. Unfortunately, it looks increasingly like Nature will step in to answer some of our questions for us, and I doubt we’ll like the answer. The highest emission scenario currently being considered by the Intergovernmental Panel on Climate Change is Representative Concentration Pathway 8.5 (8), which would bring CO2 concentrations up to 2,000 ppm, which is in the upper reaches of the range considered in ref. 2. Even this scenario can be considered somewhat optimistic, in that it assumes that the annual growth in CO emissions rate (which has been hovering around 3% for decades) will tail off by 2060 and that the emissions rate will cease growing altogether by 2100, whereafter emissions will trend to zero; unrestrained growth could eas- ily dump twice as much carbon into the atmosphere. It is not known if there are actually enough recoverable fossil fuels to emit that much CO2. Hoping that we run out of fossil fuels before bringing on a climate catastrophe does not seem like sound climate policy, but at present it seems to be the only one we have.
Located in Resources / Climate Science Documents
File PDF document The elephant, the blind, and the intersectoral intercomparison of climate impacts
1st paragraph: When decision makers discuss anthropogenic climate change, they often ignore the mighty elephant in the room, namely the question of what global warming really means on the ground. By all accounts, the impacts on our physical environment and society would be starkly different if our planet warmed by “just” 2 °C (1, 2), by a “dangerous” 4 °C (3), or by a “mind-boggling” 6–8 °C (4). However, the pictures of those sweltering worlds that are emerging from scientific research are still regrettably vague, blurred, and fragmentary (see, for example, refs. 5–7). The main reason for this vagueness is as obvious as it is tantalizing: the sheer diversity and complexity of potential climate-change effects on the existing multitude of regions, sectors, and cultures make the swift advancement of robust knowl- edge in this field extremely challenging.
Located in Resources / Climate Science Documents
File PDF document Water-controlled wealth of nations
Population growth is in general constrained by food production, which in turn depends on the access to water resources. At a country level, some populations use more water than they control because of their ability to import food and the virtual water required for its production. Here, we investigate the dependence of demographic growth on available water resources for exporting and importing nations. By quantifying the carrying capacity of nations on the basis of calculations of the virtual water available through the food trade network, we point to the existence of a global water unbalance. We suggest that current export rates will not be maintained and consequently we question the long-term sustainability of the food trade system as a whole. Water-rich regions are likely to soon reduce the amount of virtual water they export, thus leaving import-dependent regions without enough water to sustain their populations. We also investigate the potential impact of possible scenarios that might mitigate these effects through (i) cooperative interactions among nations whereby water-rich countries main- tain a tiny fraction of their food production available for export, (ii ) changes in consumption patterns, and (iii ) a positive feedback between demographic growth and technological innovations. We find that these strategies may indeed reduce the vulnerability of water-controlled societies.
Located in Resources / Climate Science Documents
File PDF document Delayed detection of climate mitigation benefits due to climate inertia and variability
Climate change mitigation acts by reducing greenhouse gas emissions, and thus curbing, or even reversing, the increase in their atmospheric concentration. This reduces the associated anthropogenic radiative forcing, and hence the size of the warming. Because of the inertia and internal variability affecting the climate system and the global carbon cycle, it is unlikely that a reduction in warming would be immediately discernible. Here we use 21st century simulations from the latest ensemble of Earth System Model experiments to investigate and quantify when mitigation becomes clearly discernible. We use one of the scenarios as a reference for a strong mitigation strategy, Representative Concentration Pathway (RCP) 2.6 and compare its outcome with either RCP4.5 or RCP8.5, both of which are less severe mitigation pathways. We analyze global mean atmospheric CO2, and changes in annually and seasonally averaged surface temperature at global and regional scales. For global mean surface temperature, the median detection time of mitigation is about 25–30 y after RCP2.6 emissions depart from the higher emission trajectories. This translates into detection of a mitigation signal by 2035 or 2045, depending on whether the comparison is with RCP8.5 or RCP4.5, respectively. The detection of climate benefits of emission mitigation occurs later at regional scales, with a median detection time between 30 and 45 y after emission paths separate. Requiring a 95% confidence level induces a delay of several decades, bringing detection time toward the end of the 21st century. regional climate change | climate variability | signal detection
Located in Resources / Climate Science Documents
File PDF document The material footprint of nations
Metrics on resource productivity currently used by governments suggest that some developed countries have increased the use of natural resources at a slower rate than economic growth (relative decoupling) or have even managed to use fewer resources over time (absolute decoupling). Using the material footprint (MF), a consumption-based indicator of resource use, we find the contrary: Achievements in decoupling in advanced economies are smaller than reported or even nonexistent. We present a time series analysis of the MF of 186 countries and identify material flows associated with global production and consumption networks in unprecedented specificity. By calculating raw material equivalents of international trade, we demonstrate that countries’ use of nondomestic resources is, on average, about threefold larger than the physical quantity of traded goods. As wealth grows, countries tend to reduce their domestic portion of materials extraction through international trade, whereas the overall mass of material consumption generally increases. With every 10% increase in gross domestic product, the average national MF increases by 6%. Our findings call into question the sole use of current resource productivity indicators in policy making and suggest the necessity of an additional focus on consumption- based accounting for natural resource use. raw material consumption | multiregion input–output analysis | sustainable resource management
Located in Resources / Climate Science Documents
File PDF document Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011
As the Earth’s third pole, the Tibetan Plateau has experienced a pronounced warming in the past decades. Recent studies reported that the start of the vegetation growing season (SOS) in the Plateau showed an advancing trend from 1982 to the late 1990s and a delay from the late 1990s to 2006. However, the findings regard- ing the SOS delay in the later period have been questioned, and the reasons causing the delay remain unknown. Here we explored the alpine vegetation SOS in the Plateau from 1982 to 2011 by integrating three long-term time-series datasets of Normalized Difference Vegetation Index (NDVI): Global Inventory Modeling and Mapping Studies (GIMMS, 1982–2006), SPOT VEGETATION (SPOT-VGT, 1998–2011), and Moderate Resolution Imaging Spec- troradiometer (MODIS, 2000–2011). We found GIMMS NDVI in 2001–2006 differed substantially from SPOT-VGT and MODIS NDVIs and may have severe data quality issues in most parts of the western Plateau. By merging GIMMS-based SOSs from 1982 to 2000 with SPOT-VGT–based SOSs from 2001 to 2011 we found the alpine vegetation SOS in the Plateau experienced a continuous advancing trend at a rate of ∼1.04 d·y−1 from 1982 to 2011, which was consistent with observed warming in springs and winters. The satellite-derived SOSs were proven to be reliable with observed phenology data at 18 sites from 2003 to 2011; however, comparison of their trends was inconclusive due to the limited temporal coverage of the observed data. Longer-term observed data are still needed to validate the phenology trend in the future.
Located in Resources / Climate Science Documents
File PDF document Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States
Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environ- mental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal- based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion—that beef production demands about 1 order of magnitude more resources than alternative livestock categories—is robust under existing uncertainties. The study thus elu- cidates the multiple environmental benefits of potential, easy-to- implement dietary changes, and highlights the uniquely high re- source demands of beef. food impact | foodprint | geophysics of agriculture | multimetric analysis
Located in Resources / Climate Science Documents
File PDF document Global water resources affected by human interventions and climate change
Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multi- model approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. ISI-MIP | WaterMIP
Located in Resources / Climate Science Documents
File PDF document Satellite methods underestimate indirect climate forcing by aerosols
Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmo- sphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for lnðNc Þ versus lnðAODÞ derived from PD results do not represent the atmo- spheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using lnðNcÞ versus lnðAIÞ (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Never- theless, the AIE using lnðNcÞ versus lnðAIÞ may be substantially incorrect on a regional basis and may underestimate or overesti- mate the global average forcing by 25 to 35%.
Located in Resources / Climate Science Documents