Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
Resources
Resources Inbox
Located in Resources
File PDF document Response of snow-dependent hydrologic extremes to continued global warming
Snow accumulation is critical for water availability in the Northern Hemisphere 1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3–5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near- term decades and at 2 ◦ C global warming. The occurrence of extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 ◦ C above the pre-industrial baseline.
Located in Resources / Climate Science Documents
File PDF document Response of the North Atlantic storm track to climate change shaped by ocean– atmosphere coupling
A poleward shift of the mid-latitude storm tracks in response to anthropogenic greenhouse-gas forcing has been diagnosed in climate model simulations1,2. Explanations of this effect have focused on atmospheric dynamics3–7 . However, in contrast to storm tracks in other regions, the North Atlantic storm track responds by strengthening and extending farther east, in particular on its southern flank8. These adjustments are associated with an intensification and extension of the eddy- driven jet towards western Europe9 and are expected to have considerable societal impacts related to a rise in storminess in Europe10–12. Here, we apply a regression analysis to an ensemble of coupled climate model simulations to show that the coupling between ocean and atmosphere shapes the distinct storm-track response to greenhouse-gas forcing in the North Atlantic region. In the ensemble of simulations we analyse, at least half of the differences between the storm-track responses of different models are associated with uncertainties in ocean circulation changes. We compare the fully coupled simulations with both the associated slab model simulations and an ocean-forced experiment with one climate model to establish causality. We conclude that uncertainties in the response of the North Atlantic storm track to anthropogenic emissions could be reduced through tighter constraints on the future ocean circulation.
Located in Resources / Climate Science Documents
File PDF document Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA
Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe moun- tain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic, and to identify major controlling influences on stream-water nutrients and C in areas affected by the mountain pine beetle. Soil moisture and soil N increased in soils beneath trees killed by the mountain pine beetle, reflecting reduced evapotranspiration and litter accumulation and decay. No significant changes in stream-water NO􏰣3 or dissolved organic C were observed; however, total N and total P increased, possibly due to litter breakdown or increased productivity related to warming air temperatures. Multiple-regression analyses indicated that % of basin affected by mountain pine beetles had minimal influence on stream-water NO􏰣3 and dissolved organic C; instead, other basin characteristics, such as percent of the basin classified as forest, were much more important.
Located in Resources / Climate Science Documents
File PDF document Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau
Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reduc- tions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well- being, yet there is poor understanding of the sources and magni- tude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grass- lands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegeta- tion cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces. arid ∣ horizontal flux ∣ land use ∣ national park ∣ threshold shear velocity
Located in Resources / Climate Science Documents
File PDF document Rethinking species’ ability to cope with rapid climate change
Ongoing climate change is assumed to be exceptional because of its unprecedented velocity. However, new geophysical research suggests that dramatic climatic changes during the Late Pleistocene occurred extremely rapid, over just a few years. These abrupt climatic changes may have been even faster than contemporary ones, but relatively few continent-wide extinctions of species have been documented for these periods. This raises questions about the ability of extant species to adapt to ongoing climate change. We propose that the advances in geophysical research challenge current views about species’ ability to cope with climate change, and that lessons must be learned for modelling future impacts of climate change on species. Keywords: adaptation, biodiversity, dispersal, extinction, habitat fragmentation, phenotypic plasticity, rapid climate change
Located in Resources / Climate Science Documents
File PDF document Rethinking wedges
Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 ◦C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 ‘wedges’, each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y−1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere.
Located in Resources / Climate Science Documents
File PDF document Reuling 1919.pdf
Located in Resources / TRB Library / PEK-RIC
File PDF document Reuling Animal Parasite.pdf
Located in Resources / TRB Library / PEK-RIC