Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Thinking Long Term
Thousand-year records of animal population patterns and climate yield insights into the impacts of environmental change.
Located in Resources / Climate Science Documents
File PDF document Investment, transformation and leadership CDP S&P 500 Climate Change Report 2013 On behalf of 722 investors representing US$87 trillion in assets
Sample text : Fears are increasing over future climate change impacts as we see more extreme weather events, Hurricane Sandy the most noted with damages totalling some $42 billion.2 The unprecedented melting of the Arctic ice is a clear climate alarm bell, while the first 10 years of this century have been the world’s hottest since records began, according to the World Meteorological Organization. The result is a seismic shift in corporate awareness of the need to assess physical risk from climate change and to build resilience. For investors, the risk of stranded assets has been brought to the fore by the work of Carbon Tracker. They calculate around 80% of coal, oil and gas reserves are unburnable, if governments are to meet global commitments to keep the temperature rise below 2°C. This has serious implications for institutional investors’ portfolios and valuations of companies with fossil fuel reserves. The economic case for action is strengthening. This year, we published The 3% Solution3 with the World Wildlife Fund showing that the US corporate sector could reduce emissions by 3% each year between 2010 and 2020 and deliver $780 billion in savings above costs as a result. 79% of US companies responding to CDP report higher ROI on emissions reduction investments than on the average business investment.
Located in Resources / Climate Science Documents
File PDF document Understanding Interaction Effects of Climate Change and Fire Management on Bird Distributions through Combined Process and Habitat Models
Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process-based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail ( Callipepla squamata), Loggerhead Shrike ( Lanius ludovicianus), and Rock Wren ( Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo ( Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf-area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes. Keywords: climate change, conservation planning, desert birds, ecosystem modeling, fire suppression
Located in Resources / Climate Science Documents
File PDF document Public land, timber harvests, and climate mitigation: Quantifying carbon sequestration potential on U.S. public timberlands
Scientists and policy makers have long recognized the role that forests can play in countering the atmospheric buildup of carbon dioxide (CO2), a greenhouse gas (GHG). In the United States, terrestrial carbon sequestration in private and public forests offsets approximately 11% of all GHG emissions from all sectors of the economy on an annual basis. Although much of the attention on forest carbon sequestration strategy in the United States has been on the role of private lands, public forests in the United States represent approximately 20% of the U.S. timberland area and also hold a significantly large share (30%) of the U.S. timber volume. With such a large standing timber inventory, these forested lands have considerable impact on the U.S. forest carbon balance. To help decision makers understand the carbon implications of potential changes in public timberland management, we compared a baseline timber harvest scenario with two alternative harvest scenarios and estimated annual carbon stock changes associated with each. Our analysis found that a ‘‘no timber harvest’’ scenario eliminating harvests on public lands would result in an annual increase of 17–29 million metric tonnes of carbon (MMTC) per year between 2010 and 2050—as much as a 43% increase over current sequestration levels on public timberlands and would offset up to 1.5% of total U.S. GHG emissions. In contrast, moving to a more intense harvesting policy similar to that which prevailed in the 1980s may result in annual carbon losses of 27–35 MMTC per year between 2010 and 2050. These losses would represent a significant decline (50–80%) in anticipated carbon sequestration associated with the existing timber harvest policies. If carbon sequestration were valued in the marketplace as part of a GHG offset program, the economic value of sequestered carbon on public lands could be substantial relative to timber harvest revenues.
Located in Resources / Climate Science Documents
File PDF document Old-growth forests as global carbon sinks
Old-growth forests remove carbon dioxide from the atmosphere1,2 at rates that vary with climate and nitrogen deposition3. The seques- tered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil4. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon5,6. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosys- tem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long- standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area con- tains the remaining old-growth forests7. Half of the primary forests (6 3 108 hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 6 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity8. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon9, will move back to the atmosphere if these forests are disturbed.
Located in Resources / Climate Science Documents
File PDF document What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States?
Scientific interest in carbon sequestration on rangelands is largely driven by their extent, while the interest of ranchers in the United States centers on opportunities to enhance revenue streams. Rangelands cover approximately 30% of the earth’s ice-free land surface and hold an equivalent amount of the world’s terrestrial carbon. Rangelands are grasslands, shrublands, and savannas and cover 312 million hectares in the United States. On the arid and semi-arid sites typical of rangelands annual fluxes are small and unpredictable over time and space, varying primarily with precipitation, but also with soils and vegetation. There is broad scientific consensus that non-equilibrium ecological models better explain the dynamics of such rangelands than equilibrium models, yet current and proposed carbon sequestration policies and associated grazing management recommendations in the United States often do not incorporate this developing scientific understanding of rangeland dynamics. Carbon uptake on arid and semi-arid rangelands is most often controlled by abiotic factors not easily changed by management of grazing or vegetation. Additionality may be impossible to achieve consistently through management on rangelands near the more xeric end of a rangeland climatic gradient. This point is illustrated by a preliminary examination of efforts to develop voluntary cap and trade markets for carbon credits in the United States, and options including payment for ecosystem services or avoided conversion, and carbon taxation. A preliminary analysis focusing on cap and trade and payment for avoided conversion or ecosystem services illustrates the misalignment between policies targeting vegetation management for enhanced carbon uptake and non-equilibrium carbon dynamics on arid United States rangelands. It is possible that current proposed carbon policy as exemplified by carbon credit exchange or offsets will result in a net increase in emissions, as well as investment in failed management. Rather than focusing on annual fluxes, policy and management initiatives should seek long-term protection of rangelands and rangeland soils to conserve carbon, and a broader range of environmental and social benefits. Non-equilibrium dynamics Arid lands Soil carbon Cap and trade Additionality Rangeland management
Located in Resources / Climate Science Documents
File PDF document Global Warming: Why Business is Taking it So Seriously.
Consensus is growing among scientists, governments, and business that they must act fast to combat climate change. This has already sparked efforts to limit CO[SUB 2] emissions. Many companies are now preparing for a carbon-constrained world.
Located in Resources / Climate Science Documents
File PDF document Plant-Pollinator Interactions over 120 Years: Loss of Species, Co-Occurrence, and Function
Using historic data sets, we quantified the degree to which global change over 120 years disrupted plant-pollinator interactions in a temperate forest understory community in Illinois, USA. We found degradation of interaction network structure and function and extirpation of 50% of bee species. Network changes can be attributed to shifts in forb and bee phenologies resulting in temporal mismatches, nonrandom species extinctions, and loss of spatial co-occurrences between extant species in modified landscapes. Quantity and quality of pollination services have declined through time. The historic network showed flexibility in response to disturbance; however, our data suggest that networks will be less resilient to future changes.
Located in Resources / Climate Science Documents
File PDF document Gus Speth: Communicating environmental risks in an age of disinformation
Once described as "the consummate environmental insider," Gus Speth, co-founder of the Natural Resources Defense Council, says that green organizations, politicians, and the media are failing to address the root causes of climate change and other environmental problems. He points the finger at what he calls the Òeconomic growth imperativeÓÑthe incessant quest for wealth by corporations, governments, and individualsÑand argues for decou- pling job growth from economic growth. Speth envisions a post-growth society in which renewable energy plays an important role, but the emphasis is on improved efficiency: an energy-sipping, rather than an energy-guzzling, society. He reflects on the politicization and polarization that destroyed a national consensus for action on climate change. Speth urges environmental groups not to settle for meager progress in Washington, but rather to challenge the political system and to build broad coalitions with groups working for social justice and political reform. climate change, economic growth, energy efficiency, environmental groups, environmental law, post-growth society, renewable energy, social justice
Located in Resources / Climate Science Documents
File PDF document Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity
The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely re- lated taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly re- lated taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic com- parisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. elevation gradient 􏰆 microbial ecology 􏰆 phylogenetic diversity 􏰆 macroecology 􏰆 biogeography
Located in Resources / Climate Science Documents