Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document The potential transient dynamics of forests in New England under historical and projected future climate change
Projections of vegetation distribution that incorporate the transient responses of vegetation to climate change are likely to be more efficacious than those that assume an equilibrium between climate and vegetation. We examine the non-equilibrium dynamics of a temperate forest region under historic and projected future climate change using the dynamic ecosystem model LPJ-GUESS. We parameterized LPJ-GUESS for the New England region of the United Sates utilizing eight forest cover types that comprise the regionally dominant species. We developed a set of climate data at a monthly-step and a 30-arc second spatial resolution to run the model. These datasets consist of past climate observations for the period 1901–2006 and three general circulation model projections for the period 2007–2099. Our baseline (1971–2000) simulation reproduces the distribution of forest types in our study region as compared to the National Land Cover Data 2001 (Kappa statistic00.54). Under historic and nine future climate change scenarios, maple-beech-basswood, oaks and aspen- birch were modeled to move upslope at an estimated rate of 0.2, 0.3 and 0.5 myr−1 from 1901 to 2006, and continued this trend at an accelerated rate of around 0.5, 0.9 and 1.7 myr−1 from 2007 to 2099. Spruce-fir and white pine-cedar were modeled to contract to mountain ranges and cooler regions of our study region under projected future climate change scenarios. By the end of the 21st century, 60% of New England is projected to be dominated by oaks relative to 21% at the beginning of the 21st century, while northern New England is modeled to be dominated by aspen-birch. In mid and central New England, maple-beech-basswood, yellow birch-elm and hickories co-occur and form novel species associations. In addition to warming-induced northward and upslope shifts, climate change causes more complex changes in our simulations, such as reversed conversions between forest types that currently share similar bioclimatic ranges. These results underline the importance of considering community interactions and transient dynamics in modeling studies of climate change impacts on forest ecosystems.
Located in Resources / Climate Science Documents
File The Impact of Boreal Forest Fire on Climate Warming
We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ± 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (−2.3 ± 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.
Located in Resources / Climate Science Documents
File PDF document Food-Miles and the Relative Climate Impacts of Food Choices in the United States
Despite significant recent public concern and media attention to the environmental impacts of food, few studies in the United States have systematically compared the life-cycle greenhouse gas (GHG) emissions associated with food production against long-distance distribution, aka “food-miles.” We find that although food is transported long distances in general (1640 km delivery and 6760 km life-cycle supply chain on average) the GHG emissions associated with food are dominated by the production phase, contributing 83% of the average U.S. household’s 8.1 t CO2e/yr footprint for food consumption. Transportation as a whole represents only 11% of life-cycle GHG emissions, and final delivery from producer to retail contributes only 4%. Different food groups exhibit a large range in GHG-intensity; on average, red meat is around 150% more GHG- intensive than chicken or fish. Thus, we suggest that dietary shift can be a more effective means of lowering an average household’s food-related climate footprint than “buying local.” Shifting less than one day per week’s worth of calories from red meat and dairy products to chicken, fish, eggs, or a vegetable-based diet achieves more GHG reduction than buying all locally sourced food.
Located in Resources / Climate Science Documents
File PDF document Five Stages of Climate Grief
University of Montana Professor, climate scientist, and Nobel Peace Prize winner Steve W. Running has written about "The 5 Stages of Climate Grief." Modeled after Elisabeth Kubler- Ross's Five Stages of Grief model, Running's essay focuses on understanding each stage to move to the final stage of acceptance more easily. Running explains how people must accept global warming as a problem before they resolve to do something about it.
Located in Resources / Climate Science Documents
File PDF document Robust spatially aggregated projections of climate extremes
Many climatic extremes are changing1–5, and decision-makers express a strong need for reliable information on further changes over the coming decades as a basis for adaptation strategies. Here, we demonstrate that for extremes stakeholders will have to deal with large irreducible uncertainties on local to regional scales as a result of internal variability, even if climate models improve rapidly. A multimember initial condition ensemble carried out with an Earth system model shows that trends towards more intense hot and less intense cold extremes may be masked or even reversed locally for the coming three to five decades even if greenhouse gas emissions rapidly increase. Likewise, despite a long-term trend towards more intense precipitation and longer dry spells, multidecadal trends of op- posite sign cannot be excluded over many land points. However, extremes may dramatically change at a rate much larger than anticipated from the long-term signal. Despite these large irreducible uncertainties on the local scale, projections are remarkably consistent from an aggregated spatial probability perspective. Models agree that within only three decades about half of the land fraction will see significantly more intense hot extremes. We show that even in the short term the land fraction experiencing more intense precipitation events is larger than expected from internal variability. The proposed perspective yields valuable information for decision-makers and stakeholders at the international level.
Located in Resources / Climate Science Documents
File PDF document Managing Wildfire Risk in Fire-Prone Landscapes: How Are Private Landowners Contributing?
The fire-prone landscapes include both public and private lands. Wildfire burns indiscriminately across property boundaries, which means that the way potential fuels are managed on one piece of property can affect wildfire risk on neighboring lands. KeY FINdINGS • Private forest landowners who perceive great fire risk or are concerned about hazardous fuel conditions on nearby public lands are more likely to reduce fuels on their properties and cooperate with public agencies on fuel reduction. • Most private landowners surveyed reduce fuel independently, rather than in cooperation with others, primarily because of distrust and social norms about private property ownership. • Forest owners who live on a forested parcel of land are much more likely to reduce fuels on that parcel than are owners who maintain residences elsewhere. • Limited opportunity to offset the costs of fuel reduction (e.g., with public incentive programs or income from markets for logs and wood products) poses greater constraints to fuel reduction by private forest owners than does lack of knowledge or skills.
Located in Resources / Climate Science Documents
File PDF document Relationships of Fire and Precipitation Regimes in Temperate Forests of the Eastern United States
Fire affects virtually all terrestrial ecosystems but occurs more commonly in some than in others. This paper investigates how climate, specifically the moisture regime, influences the flammability of different landscapes in the eastern United States. A previous study of spatial differ- ences in fire regimes across the central Appalachian Mountains suggested that intra-annual precipitation variability influences fire occurrence more strongly than does total annual precipitation. The results presented here support that conclusion. The relationship of fire occurrence to moisture regime is also considered for the entire eastern United States. To do so, mean annual wildfire density and mean annual area burned were calculated for 34 national forests and parks representing the major vegetation and climatic conditions throughout the eastern forests. The relationship between fire activity and two climate variables was analyzed: mean annual moisture balance [precipitation P 2 potential evapotranspiration (PET)] and daily precipitation variability (coefficient of variability for daily precipitation). Fire activity is related to both climate variables but displays a stronger relationship with precipitation vari- ability. The southeastern United States is particularly noteworthy for its high wildfire activity, which is associated with a warm, humid climate and a variable precipitation regime, which promote heavy fuel production and rapid drying of fuels. KEYWORDS: Wildfire; Fire climatology; Precipitation variability; Climatic variability
Located in Resources / Climate Science Documents
File PDF document The Relative Impact of Harvest and Fire upon Landscape-Level Dynamics of Older Forests: Lessons from the Northwest Forest Plan
Interest in preserving older forests at the landscape level has increased in many regions, including the Pacific Northwest of the United States. The North- west Forest Plan (NWFP) of 1994 initiated a sig- nificant reduction in the harvesting of older forests on federal land. We used historical satellite imagery to assess the effect of this reduction in relation to: past harvest rates, management of non-federal forests, and the growing role of fire. Harvest rates in non-federal large-diameter forests (LDF) either decreased or remained stable at relatively high rates following the NWFP, meaning that harvest reductions on federal forests, which cover half of the region, resulted in a significant regional drop in the loss of LDF to harvest. However, increased losses of LDF to fire outweighed reductions in LDF harvest across large areas of the region. Elevated fire levels in the western United States have been correlated to changing climatic conditions, and if recent fire patterns persist, preservation of older forests in dry ecosystems will depend upon practical and coordi- nated fire management across the landscape. Key words: disturbance; fire; landsat; forest management; Northwest Forest Plan; old growth.
Located in Resources / Climate Science Documents
File PDF document Linking forest fires to lake metabolism and carbon dioxide emissions in the boreal region of Northern Quebec
Natural fires annually decimate up to 1% of the forested area in the boreal region of Que ́bec, and represent a major structuring force in the region, creating a mosaic of watersheds characterized by large variations in vegetation structure and composition. Here, we investigate the possible connections between this fire-induced watershed heterogeneity and lake metabolism and CO2 dynamics. Plankton respiration, and water–air CO2 fluxes were measured in the epilimnia of 50 lakes, selected to lie within distinct watershed types in terms of postfire terrestrial succession in the boreal region of Northern Que ́ bec. Plankton respiration varied widely among lakes (from 21 to 211lgCL􏰚1day􏰚1), was negatively related to lake area, and positively related to dis- solved organic carbon (DOC). All lakes were supersaturated in CO2 and the resulting carbon (C) flux to the atmosphere (150 to over 3000 mg C m2 day􏰚1) was negatively related to lake area and positively to DOC concentration. CO2 fluxes were positively related to integrated water column respiration, suggesting a biological component in this flux. Both respiration and CO2 fluxes were strongly negatively related to years after the last fire in the basin, such that lakes in recently burnt basins had significantly higher C emissions, even after the influence of lake size was removed. No significant differences were found in nutrients, chlorophyll, and DOC between lakes in different basin types, suggesting that the fire-induced watershed features influence other, more subtle aspects, such as the quality of the organic C reaching lakes. The fire-induced enhancement of lake organic C mineralization and C emissions represents a long-term impact that increases the overall C loss from the landscape as the result of fire, but which has never been included in current regional C budgets and future projections. The need to account for this additional fire-induced C loss becomes critical in the face of predictions of increasing incidence of fire in the circumboreal landscape. Keywords: boreal, carbon dioxide flux, climate, forest fire, lakes, organic carbon, plankton respiration,
Located in Resources / Climate Science Documents
File PDF document Wildfire responses to abrupt climate change in North America
It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the last glacial–interglacial transition (15 to 10 ka), a time of large and rapid climate changes. We also test the hypothesis that a comet impact initiated continental-scale wildfires at 12.9 ka; the data do not support this idea, nor are continent-wide fires indi- cated at any time during deglaciation. There are, however, clear links between large climate changes and fire activity. Biomass burning gradually increased from the glacial period to the begin- ning of the Younger Dryas. Although there are changes in biomass burning during the Younger Dryas, there is no systematic trend. There is a further increase in biomass burning after the Younger Dryas. Intervals of rapid climate change at 13.9, 13.2, and 11.7 ka are marked by large increases in fire activity. The timing of changes in fire is not coincident with changes in human population density or the timing of the extinction of the megafauna. Although these factors could have contributed to fire-regime changes at individual sites or at specific times, the charcoal data indicate an important role for climate, and particularly rapid climate change, in deter- mining broad-scale levels of fire activity. biomass burning 􏰀 charcoal 􏰀 comet 􏰀 Younger Dryas
Located in Resources / Climate Science Documents