Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Evolution of Grasses and Grassland Ecosystems
The evolution and subsequent ecological expansion of grasses (Poaceae) since the Late Cretaceous have resulted in the establishment of one of Earth’s dominant biomes, the temperate and tropical grasslands, at the expense of forests. In the past decades, several new approaches have been applied to the fossil record of grasses to elucidate the patterns and processes of this ecosystem transformation. The data indicate that the development of grassland ecosystems on most continents was a multistage process involving the Pale- ogene appearance of (C3 and C4) open-habitat grasses, the mid-late Cenozoic spread of C3 grass-dominated habitats, and, finally, the Late Neogene expansion of C4 grasses at tropical-subtropical latitudes. The evolution of herbivores adapted to grasslands did not necessarily coincide with the spread of open-habitat grasses. In addition, the timing of these evolutionary and ecological events varied between regions. Consequently, region-by-region investigations using both direct (plant fossils) and indirect (e.g., stable carbon isotopes, faunas) evidence are required for a full understanding of the tempo and mode of grass and grassland evolution.
Located in Resources / Climate Science Documents
File PDF document Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk
Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and car- bon-cycle feedbacks. Recent drought-induced, widespread forest die-offs highlight that climate change could acceler- ate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and pre- cludes mechanistic modeling and prediction of forest die-off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die-off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumu- lated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavita- tion, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deteri- oration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vul- nerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate–vege- tation models. Finally, our findings highlight the critical role of drought stress accumulation and repair of stress- induced damage for avoiding plant mortality, presenting a dynamic and contingent framework for drought impacts on forest ecosystems. Keywords: biosphere–atmosphere interactions, climate change, ecosystem shift, forest mortality, vegetation model, xylem cavitation, dieoff
Located in Resources / Climate Science Documents
File PDF document Are we in the midst of the sixth mass extinction? A view from the world of amphibians
Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environ- ments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one- third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infec- tious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction. chytridiomycosis 􏰎 climate change 􏰎 population declines 􏰎 Batrachochytrium dendrobatidis 􏰎 emerging disease
Located in Resources / Climate Science Documents
File PDF document A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests
Of particular concern are potential increases in tree mortality associated with climate- induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world’s forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide. heat, temperature, drought, tree mortality, forest dieoff
Located in Resources / Climate Science Documents
File PDF document Afforestation Effects on Soil Carbon Storage in the United States: A Synthesis
Afforestation (tree establishment on nonforested land) is a management option for increasing terrestrial C sequestration and mitigating rising atmo- spheric carbon dioxide because, compared to nonforested land uses, afforestation increases C storage in aboveground pools. However, because terrestrial ecosystems typically store most of their C in soils, afforestation impacts on soil organic carbon (SOC) storage are critical components of eco- system C budgets. We applied synthesis methods to identify the magnitude and drivers of afforestation impacts on SOC, and the temporal and verti- cal distributions of SOC change during afforestation in the United States. Meta-analysis of 39 papers from 1957 to 2010 indicated that previous land use drives afforestation impacts on SOC in mineral soils (overall average = +21%), but mined and other industrial lands (+173%) and wildlands (+31%) were the only groups that specifically showed categorically significant increases. Temporal patterns of SOC increase were statistically significant on former industrial and agricultural lands (assessed by continuous meta- analysis), and suggested that meaningful SOC increases require ≥15 and 30 yr of afforestation, respectively. Meta-analysis of 13C data demonstrated the greatest SOC changes occur at the surface soil of the profile, although par- tial replacement of C stocks derived from previous land uses was frequently detectable below 1 m. A geospatial analysis of 409 profiles from the National Soil Carbon Network database supported 13C meta-analysis results, indicating that transition from cultivation to forest increased A horizon SOC by 32%. In sum, our findings demonstrate that afforestation has significant, positive effects on SOC sequestration in the United States, although these effects require decades to manifest and primarily occur in the uppermost (and per- haps most vulnerable) portion of the mineral soil profile. Abbreviations: BD, bulk density; CI, confidence interval; MAP, mean annual precipitation; MAT, mean annual temperature; SOC, soil organic carbon.
Located in Resources / Climate Science Documents
File PDF document Adaptive management of biological systems: A review
Adaptive Management (AM) is widely considered to be the best available approach for managing biolog- ical systems in the presence of uncertainty. But AM has arguably only rarely succeeded in improving bio- diversity outcomes. There is therefore an urgent need for reflection regarding how practitioners might overcome key problems hindering greater implementation of AM. In this paper, we present the first structured review of the AM literature that relates to biodiversity and ecosystem management, with the aim of quantifying how rare AM projects actually are. We also investigated whether AM practitioners in terrestrial and aquatic systems described the same problems; the degree of consistency in how the term ‘adaptive management’ was applied; the extent to which AM projects were sustained over time; and whether articles describing AM projects were more highly cited than comparable non-AM articles. We found that despite the large number of articles identified through the ISI web of knowledge (n = 1336), only 61 articles (<5%) explicitly claimed to enact AM. These 61 articles cumulatively described 54 separate projects, but only 13 projects were supported by published monitoring data. The extent to which these 13 projects applied key aspects of the AM philosophy – such as referring to an underlying conceptual model, enacting ongoing monitoring, and comparing alternative management actions – varied enormously. Further, most AM projects were of short duration; terrestrial studies discussed biodiversity conservation significantly more frequently than aquatic studies; and empirical studies were no more highly cited than qualitative articles. Our review highlights that excessive use of the term ‘adaptive man- agement’ is rife in the peer-reviewed literature. However, a small but increasing number of projects have been able to effectively apply AM to complex problems. We suggest that attempts to apply AM may be improved by: (1) Better collaboration between scientists and representatives from resource-extracting industries. (2) Better communication of the risks of not doing AM. (3) Ensuring AM projects ‘‘pass the test of management relevance’’.
Located in Resources / Climate Science Documents
File PDF document Evaluating the Effects and Effectiveness of Post-fire Seeding Treatments in Western Forests
Key Findings• In studies that evaluated soil erosion in seeded versus unseeded controls, 78 percent revealed that seeding did not reduce erosion relative to unseeded controls. Even when seeding significantly increased vegetative cover, there was insufficient plant cover to stabilize soils within the first two years after fire. •Sixty percent of the studies reported that seeding deterred native plant recovery in the short-term. •Out of 11 papers that evaluated the ability of seeding to curtail non-native plant species invasions, 54 percent stated that seeding treatments were effective and 45 percent stated they were ineffective.• Forty papers and 67 Burned Area Reports dated between 1970 and 2006 revealed an increased use of native species and annual cereal grains/hybrids during seeding treatments over time, with native species dominating seed mixes. • From 2000 to 2007, total Burned Area Emergency Response (BAER) seeding expenditures have increased substantially, reaching an average of $3.3 million per year—a 192 percent increase compared to the average spent over the previous 30 years.
Located in Resources / Climate Science Documents
File PDF document Analysis of monotonic greening and browning trends from global NDVI time-series
Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset (1981–2006). Using the complete dataset, greening and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in length of growing season were accounted for by analyzing the time-series using vegetation development stages rather than calendar days. Results differed substantially between the models, even though the input data were the same. Prominent regional greening trends identified by several other studies were confirmed but the models were inconsistent in areas with weak trends. The linear model using data corrected for seasonality showed similar trend slopes to those described in previous work using linear models on yearly mean values. The non-parametric models demonstrated the significant influence of variations in phenology; accounting for these variations should yield more robust trend analyses and better understanding of vegetation trends.
Located in Resources / Climate Science Documents
File PDF document The subnivium: a deteriorating seasonal refugium
For many terrestrial organisms in the Northern Hemisphere, winter is a period of resource scarcity and energy deficits, survivable only because a seasonal refugium – the “subnivium” – exists beneath the snow. The warmer and more stable conditions within the subnivium are principally driven by snow duration, density, and depth. In temperate regions, the subnivium is important for the overwintering success of plants and animals, yet winter conditions are changing rapidly worldwide. Throughout the Northern Hemisphere, the impacts of climate change are predicted to be most prominent during the winter months, resulting in a shorter snow season and decreased snow depth. These climatic changes will likely modify the defining qualities of the subnivium, resulting in broad-scale shifts in distributions of species that are dependent on these refugia. Resultant changes to the subnivium, however, will be spatially and temporally variable. We believe that ecologists and managers are overlooking this widespread, crucial, and vulnerable seasonal refugium, which is rapidly deteriorating due to global climate change.
Located in Resources / Climate Science Documents
File PDF document The Importance of Land-Use Legacies to Ecology and Conservation
Recognition of the importance of land-use history and its legacies in most ecological systems has been a major factor driving the recent focus on human activity as a legitimate and essential subject of environmental science. Ecologists, conservationists, and natural resource policymakers now recognize that the legacies of land-use activities continue to influence ecosystem structure and function for decades or centuries—or even longer— after those activities have ceased. Consequently, recognition of these historical legacies adds explanatory power to our understanding of modern conditions at scales from organisms to the globe and reduces missteps in anticipating or managing for future conditions. As a result, environmental history emerges as an integral part of ecological science and conservation planning. By considering diverse ecological phenomena, ranging from biodiversity and biogeochemical cycles to ecosystem resilience to anthropogenic stress, and by examining terrestrial and aquatic ecosystems in temperate to tropical biomes, this article demonstrates the ubiquity and importance of land-use legacies to environmental science and management. Keywords: land use, disturbance, conservation, ecosystem process, natural resource management
Located in Resources / Climate Science Documents