Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change
Species are largely predicted to shift poleward as global temperatures increase, with this fingerprint of climate change being already observed across a range of taxonomic groups and, mostly temperate, geographic locations1–5. However, the assumption of uni-directional distribution shifts does not account for complex interactions among temperature, precipitation and species-specific tolerances 6, all of which shape the direction and magnitude of changes in a species’ climatic niche. We analysed 60 years of past climate change on the Australian continent, assessing the velocity of changes in temperature and precipitation, as well as changes in climatic niche space for 464 Australian birds. We show large magnitude and rapid rates of change in Australian climate over the past 60 years resulting in high-velocity and multi-directional, including equatorial, shifts in suitable climatic space for birds (ranging from 0.1 to 7.6kmyr−1, mean 1.27kmyr−1). Overall, if measured only in terms of poleward distribution shifts, the fingerprint of climate change is underestimated by an average of 26% in temperate regions of the continent and by an average of 95% in tropical regions. We suggest that the velocity of movement required by Australian species to track their climatic niche may be much faster than previously thought and that the interaction between temperature and precipitation changes will result in multi-directional distribution shifts globally.
Located in Resources / Climate Science Documents
File PDF document Regional carbon dioxide implications of forest bioenergy production
Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests1, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions 2, and forest thinning to reduce wildfire emissions 3. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2–14% (46–405 Tg C) higher emissions compared with current management practices over the next 20 years. We studied 80 forest types in 19 ecoregions, and found that the current carbon sink in 16 of these ecoregions is sufficiently strong that it cannot be matched or exceeded through substitution of fossil fuels by forest bioenergy. If the sink in these ecoregions weakens below its current level by 30–60 g C m−2 yr−1 owing to insect infestations, increased fire emissions or reduced primary production, management schemes including bioenergy production may succeed in jointly reducing fire risk and carbon emissions. In the remaining three ecoregions, immediate implementation of fire prevention and biofuel policies may yield net emission savings. Hence, forest policy should consider current forest carbon balance, local forest conditions and ecosystem sustainability in establishing how to decrease emissions.
Located in Resources / Climate Science Documents
File PDF document Shrinking body size as an ecological response to climate change
Determining how climate change will affect global ecology and ecosystem services is one of the next important frontiers in environmental science. Many species already exhibit smaller sizes as a result of climate change and many others are likely to shrink in response to continued climate change, following fundamental ecological and metabolic rules. This could negatively impact both crop plants and protein sources such as fish that are important for human nutrition. Furthermore, heterogeneity in response is likely to upset ecosystem balances. We discuss future research directions to better understand the trend and help ameliorate the trophic cascades and loss of biodiversity that will probably result from continued decreases in organism size.
Located in Resources / Climate Science Documents
File PDF document The temperature response of soil microbial efficiency and its feedback to climate
Soils are the largest repository of organic carbon (C) in the terrestrial biosphere and represent an important source of carbon dioxide (CO2)totheatmosphere,releasing60–75PgC an- nually through microbial decomposition of organic materials1,2. A primary control on soil CO2 flux is the efficiency with which the microbial community uses C. Despite its critical importance to soil–atmosphere CO2 exchange, relatively few studies have examined the factors controlling soil microbial efficiency. Here, we measured the temperature response of microbial efficiency in soils amended with substrates varying in lability. We also examined the temperature sensitivity of microbial efficiency in response to chronic soil warming in situ. We find that the efficiency with which soil microorganisms use organic matter is dependent on both temperature and substrate quality, with efficiency declining with increasing temperatures for more recalcitrant substrates. However, the utilization efficiency of a more recalcitrant substrate increased at higher temperatures in soils exposed to almost two decades of warming 5 ◦ C above ambient. Our work suggests that climate warming could alter the decay dynamics of more stable organic matter compounds, thereby having a positive feedback to climate that is attenuated by a shift towards a more efficient microbial community in the longer term.
Located in Resources / Climate Science Documents
File PDF document Global diversity of drought tolerance and grassland climate-change resilience
Drought reduces plant productivity, induces widespread plant mortality and limits the geographic distribution of plant species1–7. As climates warm and precipitation patterns shift in the future8,9, understanding the distribution of the diversity of plant drought tolerance is central to predicting future ecosystem function and resilience to climate change10–12 . These questions are especially pressing for the world’s 11,000 grass species13, which dominate a large fraction of the terrestrial biosphere14, yet are poorly characterized with respect to re- sponses to drought. Here, we show that physiological drought tolerance, which varied tenfold among 426 grass species, is well distributed both climatically and phylogenetically, sug- gesting most native grasslands are likely to contain a high diversity of drought tolerance. Consequently, local species may help maintain ecosystem functioning in response to changing drought regimes without requiring long-distance migrations of grass species. Furthermore, physiologically drought-tolerant species had higher rates of water and carbon dioxide exchange than intolerant species, indicating that severe droughts may generate legacies for ecosystem functioning. In all, our findings suggest that diverse grasslands throughout the globe have the potential to be resilient to drought in the face of climate change through the local expansion of drought-tolerant species.
Located in Resources / Climate Science Documents
File PDF document Increased soil emissions of potent greenhouse gases under increased atmospheric CO2
Increasing concentrations of atmospheric carbon dioxide (CO2) can affect biotic and abiotic conditions in soil, such as microbial activity and water content 1,2. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N2O) and methane (CH4) (refs 2, 3). However, studies on fluxes of N2O and CH4 from soil under increased atmo- spheric CO2 have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO2 (ranging from 463 to 780 parts per million by volume) stimulates both N2O emissions from upland soils and CH4 emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrest- rial carbon sink under increased atmospheric CO2 concentrations4. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated.
Located in Resources / Climate Science Documents
File PDF document Shifts in Season
Is the rising heat forcing change on the seasons? To find out, observed data may be superior to model projections.
Located in Resources / Climate Science Documents
File PDF document Natural and anthropogenic variations in methane sources during the past two millennia
Methane is an important greenhouse gas that is emitted from multiple natural and anthropogenic sources. Atmospheric methane concentrations have varied on a number of timescales in the past, but what has caused these variations is not always well understood1–8. The different sources and sinks of methane have specific isotopic signatures, and the isotopic composition of methane can therefore help to identify the environmental drivers of variations in atmo- spheric methane concentrations9. Here we present high-resolution carbon isotope data (d13C content) for methane from two ice cores from Greenland for the past two millennia. We find that the d13C content underwent pronounced centennial-scale variations between 100 BC and AD 1600. With the help of two-box model calculations, we show that the centennial-scale variations in isotope ratios can be attributed to changes in pyrogenic and biogenic sources. We find correlations between these source changes and both natural climate variability—such as the Medieval Climate Anomaly and the Little Ice Age—and changes in human population and land use, such as the decline of the Roman empire and the Han dynasty, and the population expansion during the medieval period.
Located in Resources / Climate Science Documents
File PDF document Has the Earth’s sixth mass extinction already arrived?
Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.
Located in Resources / Climate Science Documents
File PDF document The rebound effect is overplayed
Increasing energy efficiency brings emissions savings. Claims that it backfires are a distraction, say Kenneth Gillingham and colleagues.
Located in Resources / Climate Science Documents