Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change
The United States produces 41% of the world’s corn and 38% of the world’s soybeans. These crops comprise two of the four largest sources of caloric energy produced and are thus critical for world food supply. We pair a panel of county-level yields for these two crops, plus cotton (a warmer-weather crop), with a new fine-scale weather dataset that incorporates the whole distribution of tem- peratures within each day and across all days in the growing season. We find that yields increase with temperature up to 29° C for corn, 30° C for soybeans, and 32° C for cotton but that tem- peratures above these thresholds are very harmful. The slope of the decline above the optimum is significantly steeper than the incline below it. The same nonlinear and asymmetric relationship is found when we isolate either time-series or cross-sectional variations in temperatures and yields. This suggests limited his- torical adaptation of seed varieties or management practices to warmer temperatures because the cross-section includes farmers’ adaptations to warmer climates and the time-series does not. Holding current growing regions fixed, area-weighted average yields are predicted to decrease by 30 – 46% before the end of the century under the slowest (B1) warming scenario and decrease by 63–82% under the most rapid warming scenario (A1FI) under the Hadley III model. agriculture 􏰀 panel analysis 􏰀 time series 􏰀 cross section 􏰀 farmer adaptation
Located in Resources / Climate Science Documents
File PDF document Global warming benefits the small in aquatic ecosystems
Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto- and zooplankton, and fish) from the community to the individual level. Using long-term surveys, experimental data and published results, we show a significant increase in the proportion of small-sized species and young age classes and a decrease in size-at-age. These results are in accordance with the ecological rules dealing with the temperature–size relationships (i.e., Bergmann’s rule, James’ rule and Temperature–Size Rule). Our study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events. biological scale 􏰀 body size 􏰀 climate change 􏰀 ectotherms 􏰀 metaanalysis
Located in Resources / Climate Science Documents
File PDF document Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology
Many ectotherms exhibit striking latitudinal gradients in lifespan. However, it is unclear whether lifespan gradients in distantly related taxa share a common mechanistic explanation. We com- piled data on geographic variation in lifespan in ectotherms from around the globe to determine how much of this intraspecific variation in lifespan may be explained by temperature using the simple predictions of the metabolic theory of ecology. We found that the metabolic theory accurately predicts how lifespan varies with temperature within species in a wide range of ectotherms in both controlled laboratory experiments and free-living populations. After removing the effect of temperature, only a small fraction of species showed significant trends with latitude. There was, however, considerable residual intraspecific variation indi- cating that other, more local factors are likely to be important in determining lifespan within species. These findings suggest that, given predicted increases in global temperature, lifespan of ectotherms may be substantially shortened in the future. ectotherms 􏰀 intraspecific 􏰀 longevity 􏰀 MTE
Located in Resources / Climate Science Documents
File PDF document Soil warming, carbon–nitrogen interactions, and forest carbon budgets
Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming- induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. climate system feedbacks | ecological stoichiometry | forest carbon budget | forest nitrogen budget | global climate change
Located in Resources / Climate Science Documents
File PDF document Climate negotiations under scientific uncertainty
How does uncertainty about “dangerous” climate change affect the prospects for international cooperation? Climate negotiations usually are depicted as a prisoners’ dilemma game; collectively, countries are better off reducing their emissions, but self-interest impels them to keep on emitting. We provide experimental evidence, grounded in an analytical framework, showing that the fear of crossing a dangerous threshold can turn climate negotiations into a coordination game, making collective action to avoid a dangerous threshold virtually assured. These results are robust to uncertainty about the impact of crossing a threshold, but uncertainty about the location of the threshold turns the game back into a prisoners’ dilemma, causing cooperation to collapse. Our research explains the paradox of why countries would agree to a collective goal, aimed at reducing the risk of catastrophe, but act as if they were blind to this risk.
Located in Resources / Climate Science Documents
File PDF document Protected areas facilitate species’ range expansions
The benefits of protected areas (PAs) for biodiversity have been questioned in the context of climate change because PAs are static, whereas the distributions of species are dynamic. Current PAs may, however, continue to be important if they provide suitable locations for species to colonize at their leading-edge range boundaries, thereby enabling spread into new regions. Here, we present an empirical assessment of the role of PAs as targets for coloniza- tion during recent range expansions. Records from intensive sur- veys revealed that seven bird and butterfly species have colonized PAs 4.2 (median) times more frequently than expected from the availability of PAs in the landscapes colonized. Records of an additional 256 invertebrate species with less-intensive surveys supported these findings and showed that 98% of species are disproportionately associated with PAs in newly colonized parts of their ranges. Although colonizing species favor PAs in general, species vary greatly in their reliance on PAs, reflecting differences in the dependence of individual species on particular habitats and other conditions that are available only in PAs. These findings highlight the importance of current PAs for facilitating range expansions and show that a small subset of the landscape receives a high proportion of colonizations by range-expanding species. conservation | climate change adaptation | nature reserves
Located in Resources / Climate Science Documents
File PDF document Impacts of climate change on the world’s most exceptional ecoregions
The current rate of warming due to increases in greenhouse gas (GHG) emissions is very likely unprecedented over the last 10,000 y. Although the majority of countries have adopted the view that global warming must be limited to <2 °C, current GHG emission rates and nonagreement at Copenhagen in December 2009 increase the likelihood of this limit being exceeded by 2100. Extensive evi- dence has linked major changes in biological systems to 20th century warming. The “Global 200” comprises 238 ecoregions of exceptional biodiversity [Olson DM, Dinerstein E (2002) Ann Mo Bot Gard 89:199–224]. We assess the likelihood that, by 2070, these iconic ecoregions will regularly experience monthly climatic conditions that were extreme in 1961–1990. Using >600 realizations from climate model ensembles, we show that up to 86% of terres- trial and 83% of freshwater ecoregions will be exposed to average monthly temperature patterns >2 SDs (2σ) of the 1961–1990 base- line, including 82% of critically endangered ecoregions. The entire range of 89 ecoregions will experience extreme monthly temper- atures with a local warming of <2 °C. Tropical and subtropical ecor- egions, and mangroves, face extreme conditions earliest, some with <1 °C warming. In contrast, few ecoregions within Boreal Forests and Tundra biomes will experience such extremes this cen- tury. On average, precipitation regimes do not exceed 2σ of the baseline period, although considerable variability exists across the climate realizations. Further, the strength of the correlation between seasonal temperature and precipitation changes over nu- merous ecoregions. These results suggest many Global 200 ecore- gions may be under substantial climatic stress by 2100. climate impacts | climate model ensemble | conservation extreme
Located in Resources / Climate Science Documents
File PDF document Temperature increase of 21st century mitigation scenarios
Estimates of 21st Century global-mean surface temperature in- crease have generally been based on scenarios that do not include climate policies. Newly developed multigas mitigation scenarios, based on a wide range of modeling approaches and socioeconomic assumptions, now allow the assessment of possible impacts of climate policies on projected warming ranges. This article assesses the atmospheric CO2 concentrations, radiative forcing, and tem- perature increase for these new scenarios using two reduced- complexity climate models. These scenarios result in temperature increase of 0.5–4.4°C over 1990 levels or 0.3–3.4°C less than the no-policy cases. The range results from differences in the assumed stringency of climate policy and uncertainty in our understanding of the climate system. Notably, an average minimum warming of 􏰂1.4°C (with a full range of 0.5–2.8°C) remains for even the most stringent stabilization scenarios analyzed here. This value is sub- stantially above previously estimated committed warming based on climate system inertia alone. The results show that, although ambitious mitigation efforts can significantly reduce global warming, adaptation measures will be needed in addition to mitigation to reduce the impact of the residual warming. climate 􏰀 climate policy 􏰀 stabilization 􏰀 integrated assessment 􏰀 scenario
Located in Resources / Climate Science Documents
File PDF document Evolutionary history and the effect of biodiversity on plant productivity
Loss of biological diversity because of extinction is one of the most pronounced changes to the global environment. For several decades, researchers have tried to understand how changes in biodiversity might impact biomass production by examining how biomass correlates with a number of biodiversity metrics (especially the number of species and functional groups). This body of research has focused on species with the implicit assumption that they are independent entities. However, functional and ecological similarities are shaped by patterns of common ancestry, such that distantly related species might contribute more to production than close relatives, perhaps by increasing niche breadth. Here, we analyze 2 decades of experiments performed in grassland ecosystems throughout the world and examine whether the evolutionary relationships among the species comprising a community predict how biodiversity impacts plant biomass production. We show that the amount of phylogenetic diversity within communities explained significantly more variation in plant community biomass than other measures of diversity, such as the number of species or functional groups. Our results reveal how evolutionary history can provide critical information for understanding, predicting, and potentially ameliorating the effects of biodiversity loss and should serve as an impetus for new biodiversity experiments.
Located in Resources / Climate Science Documents
File PDF document Ecosystem services: From theory to implementation
Around the world, leaders are increasingly recognizing ecosystems as natural capital assets that supply life-support services of tremendous value. The challenge is to turn this recognition into incentives and institutions that will guide wise investments in natural capital, on a large scale. Advances are required on three key fronts, each featured here: the science of ecosystem production functions and service mapping; the design of appropriate finance, policy, and governance systems; and the art of implementing these in diverse biophysical and social contexts. Scientific understanding of ecosystem production functions is improving rapidly but remains a limiting factor in incorporating natural capital into decisions, via systems of national accounting and other mechanisms. Novel institutional structures are being established for a broad array of services and places, creating a need and opportunity for systematic assessment of their scope and limitations. Finally, it is clear that formal sharing of experience, and defining of priorities for future work, could greatly accelerate the rate of innova- tion and uptake of new approaches.
Located in Resources / Climate Science Documents