-
Higher origination and extinction rates in larger mammals
-
Do large mammals evolve faster than small mammals or vice versa? Because the answer to this question contributes to our understanding of how life-history affects long-term and large-scale evolutionary patterns, and how microevolutionary rates scale-up to macroevolu- tionary rates, it has received much attention. A satisfactory or con- sistent answer to this question is lacking, however. Here, we take a fresh look at this problem using a large fossil dataset of mammals from the Neogene of the Old World (NOW). Controlling for sampling biases, calculating per capita origination and extinction rates of boundary-crossers and estimating survival probabilities using cap- ture-mark-recapture (CMR) methods, we found the recurring pattern that large mammal genera and species have higher origination and extinction rates, and therefore shorter durations. This pattern is surprising in the light of molecular studies, which show that smaller animals, with their shorter generation times and higher metabolic rates, have greater absolute rates of evolution. However, higher molecular rates do not necessarily translate to higher taxon rates because both the biotic and physical environments interact with phenotypic variation, in part fueled by mutations, to affect origina- tion and extinction rates. To explain the observed pattern, we propose that the ability to evolve and maintain behavior such as hibernation, torpor and burrowing, collectively termed ‘‘sleep-or- hide’’ (SLOH) behavior, serves as a means of environmental buffering during expected and unexpected environmental change. SLOH be- havior is more common in some small mammals, and, as a result, SLOH small mammals contribute to higher average survivorship and lower origination probabilities among small mammals.
body size environmental buffering metabolism Neogene mammals turnover
Located in
Resources
/
Climate Science Documents
-
Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world
-
Excerpt from text : Because of the direct effect of CO2 and temperature on global food supplies, the influence of these changes on plant physiology and ecology is being actively studied (4–7). How these elements of global change may alter the interactions between plants and the insects that feed on them is relatively unknown. By bringing to light secrets contained in the fossil record, Currano et al. (8), published in this issue of PNAS, found that the amount and diversity of insect damage to plants increased in association with an abrupt rise in atmospheric CO2 and global temperature that occurred 55 million years ago. If the past is indeed a window to the future, their findings sug- gest that increased insect herbivory will be one more unpleasant surprise arising from anthropogenic climate change.
Located in
Resources
/
Climate Science Documents
-
Global declines in oceanic nitrification rates as a consequence of ocean acidification
-
Ocean acidification produced by dissolution of anthropogenic carbon dioxide (CO2) emissions in seawater has profound conse- quences for marine ecology and biogeochemistry. The oceans have absorbed one-third of CO2 emissions over the past two centuries, altering ocean chemistry, reducing seawater pH, and affecting marine animals and phytoplankton in multiple ways. Microbially mediated ocean biogeochemical processes will be pivotal in deter- mining how the earth system responds to global environmental change; however, how they may be altered by ocean acidification is largely unknown. We show here that microbial nitrification rates decreased in every instance when pH was experimentally reduced (by 0.05–0.14) at multiple locations in the Atlantic and Pacific Oceans. Nitrification is a central process in the nitrogen cycle that produces both the greenhouse gas nitrous oxide and oxidized forms of nitrogen used by phytoplankton and other microorgan- isms in the sea; at the Bermuda Atlantic Time Series and Hawaii Ocean Time-series sites, experimental acidification decreased am- monia oxidation rates by 38% and 36%. Ammonia oxidation rates were also strongly and inversely correlated with pH along a gradi- ent produced in the oligotrophic Sargasso Sea (r2 = 0.87, P < 0.05). Across all experiments, rates declined by 8–38% in low pH treat- ments, and the greatest absolute decrease occurred where rates were highest off the California coast. Collectively our results sug- gest that ocean acidification could reduce nitrification rates by 3–44% within the next few decades, affecting oceanic nitrous oxide production, reducing supplies of oxidized nitrogen in the upper layers of the ocean, and fundamentally altering nitrogen cycling in the sea.
Located in
Resources
/
Climate Science Documents
-
Sharply increased insect herbivory during the Paleocene–Eocene Thermal Maximum
-
The Paleocene–Eocene Thermal Maximum (PETM, 55.8 Ma), an abrupt global warming event linked to a transient increase in pCO2, was comparable in rate and magnitude to modern anthropogenic climate change. Here we use plant fossils from the Bighorn Basin of Wyoming to document the combined effects of temperature and pCO2 on insect herbivory. We examined 5,062 fossil leaves from five sites positioned before, during, and after the PETM (59–55.2 Ma). The amount and diversity of insect damage on angiosperm leaves, as well as the relative abundance of specialized damage, correlate with rising and falling temperature. All reach distinct maxima during the PETM, and every PETM plant species is exten- sively damaged and colonized by specialized herbivores. Our study suggests that increased insect herbivory is likely to be a net long-term effect of anthropogenic pCO2 increase and warming temperatures.
Bighorn Basin paleobotany plant–insect interactions rapid climate change
Located in
Resources
/
Climate Science Documents
-
Combined climate and carbon-cycle effects of large-scale deforestation
-
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth’s climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeo- chemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth’s climate, because the warming carbon-cycle effects of de- forestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons un-related to climate.
Located in
Resources
/
Climate Science Documents
-
Populations of migratory bird species that did not show a phenological response to climate change are declining
-
Recent rapid climatic changes are associated with dramatic changes in phenology of plants and animals, with optimal timing of reproduction advancing considerably in the northern hemisphere. Some species may not have advanced their timing of breeding suffi- ciently to continue reproducing optimally relative to the occur- rence of peak food availability, thus becoming mismatched com- pared with their food sources. The degree of mismatch may differ among species, and species with greater mismatch may be char- acterized by declining populations. Here we relate changes in spring migration timing by 100 European bird species since 1960, considered as an index of the phenological response of bird species to recent climate change, to their population trends. Species that declined in the period 1990–2000 did not advance their spring migration, whereas those with stable or increasing populations advanced their migration considerably. On the other hand, popu- lation trends during 1970–1990 were predicted by breeding hab- itat type, northernmost breeding latitude, and winter range (with species of agricultural habitat, breeding at northern latitudes, and wintering in Africa showing an unfavorable conservation status), but not by change in migration timing. The association between population trend in 1990 –2000 and change in migration phenology was not confounded by any of the previously identified predictors of population trends in birds, or by similarity in phenotype among taxa due to common descent. Our findings imply that ecological factors affecting population trends can change over time and suggest that ongoing climatic changes will increasingly threaten vulnerable migratory bird species, augmenting their extinction risk.
conservation extinction risk migration phenology population trends
Located in
Resources
/
Climate Science Documents
-
Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park
-
Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species’ vulnerability do not adequately consider such impacts.
global warming landscape change remote sensing amphibian community drought
Located in
Resources
/
Climate Science Documents
-
An emerging movement ecology paradigm
-
1st 2 paragraphs: Movement of individual organisms, one of the most fundamental features of life on Earth, is a crucial component of almost any ecological and evolutionary process, including major problems associated with habitat fragmentation, climate change, biological invasions, and the spread of pests and diseases. The rich variety of movement modes seen among microorganisms, plants, and animals has fascinated mankind since time immemorial. The prophet Jeremiah (7th century B.C.),for instance, described the temporal consistency in migratory patterns of birds, and Aristotle (4th centur y B.C.) searched for common features unifying animal movements (see ref. 1). Modern movement research, however, is characterized by a broad range of specialized scientific approaches, each developed to explore a different type of movement carried out by a specific group of organisms (2). Beyond this separation across movement types and taxonomic (or functional) groups, movement research divides into four different ‘‘paradigms,’’ the random, biomechanical, cognitive, and optimality approaches (1), which are loosely linked to each other. Although movement research is extensive and is growing rapidly (2),
Located in
Resources
/
Climate Science Documents
-
Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations
-
The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of indi- viduals to the perceived risk while moving. These context- dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one pro- vided by the movement-ecology framework, permit the dynamic interaction of birth–death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.
demography Iberian lynx metapopulation population dynamics source-sink
Located in
Resources
/
Climate Science Documents
-
A framework for generating and analyzing movement paths on ecological landscapes
-
The movement paths of individuals over landscapes are basically represented by sequences of points (xi, yi) occurring at times ti. Theoretically, these points can be viewed as being generated by stochastic processes that in the simplest cases are Gaussian random walks on featureless landscapes. Generalizations have been made of walks that (i) take place on landscapes with features, (ii) have correlated distributions of velocity and direction of movement in each time interval, (iii) are Le ́ vy processes in which distance or waiting-time (time-between steps) distributions have infinite moments, or (iv) have paths bounded in space and time. We begin by demonstrating that rather mild truncations of fat-tailed step-size distributions have a dramatic effect on dispersion of organisms, where such truncations naturally arise in real walks of organisms bounded by space and, more generally, influenced by the interactions of physiological, behavioral, and ecological factors with landscape features. These generalizations permit not only increased realism and hence greater accuracy in constructing movement pathways, but also provide a biogeographically detailed epistemological framework for interpreting movement patterns in all organisms, whether tossed in the wind or willfully driven. We illustrate the utility of our framework by demonstrating how fission–fusion herding behavior arises among individuals endeavoring to satisfy both nutritional and safety demands in heterogeneous environments. We conclude with a brief discussion of potential methods that can be used to solve the inverse problem of identifying putative causal factors driving movement behavior on known landscapes, leaving details to references in the literature.
fission–fusion GPS landscape matrices random and Levy walks dispersal movement ecology
Located in
Resources
/
Climate Science Documents