Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File Troff document The Perfect Ocean for Drought
The 1998 –2002 droughts spanning the United States, southern Europe, and South- west Asia were linked through a common oceanic influence. Cold sea surface temperatures (SSTs) in the eastern tropical Pacific and warm SSTs in the western tropical Pacific and Indian oceans were remarkably persistent during this period. Climate models show that the climate signals forced separately by these regions acted synergistically, each contributing to widespread mid-latitude drying: an ideal scenario for spatially expansive, synchronized drought. The warmth of the Indian and west Pacific oceans was unprecedented and consistent with greenhouse gas forcing. Some implications are drawn for future drought.
Located in Resources / Climate Science Documents
File PDF document Increasing River Discharge to the Arctic Ocean
Synthesis of river-monitoring data reveals that the average annual discharge of fresh water from the six largest Eurasian rivers to the Arctic Ocean increased by7%from1936to1999.Theaverageannualrateofincreasewas2.0􏰤0.7 cubic kilometers per year. Consequently, average annual discharge from the six rivers is now about 128 cubic kilometers per year greater than it was when routine measurements of discharge began. Discharge was correlated with changes in both the North Atlantic Oscillation and global mean surface air temperature. The observed large-scale change in freshwater flux has potentially important implications for ocean circulation and climate.
Located in Resources / Climate Science Documents
File PDF document Traversing the mountaintop: world fossil fuel production to 2050
During the past century, fossil fuels—petroleum liquids, natural gas and coal—were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85–93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly grow- ing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel pro- duction was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios—low, medium and high—are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15–30 years. The subsequent peak plateau will last for 10–15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030. Keywords: coal; fossil fuels; natural gas; peak fuel production; petroleum liquids; production scenarios
Located in Resources / Climate Science Documents
File PDF document Future hotspots of terrestrial mammal loss
Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of con- servation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized accord- ing to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world.
Located in Resources / Climate Science Documents
File PDF document Physiology and Climate Change
Studies of physiological mechanisms are needed to predict climate effects on ecosystems at species and community levels.
Located in Resources / Climate Science Documents
File PDF document Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture
Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (Kleaf) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that Kleaf relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of Kleaf to damage; severing the midrib caused Kleaf and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces Kleaf, we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of Kleaf, was lower with greater major vein density and smaller leaf size (|r| = 0.85–0.90; P , 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size.
Located in Resources / Climate Science Documents
File PDF document The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems
The Miocene is characterized by a series of key climatic events that led to the founding of the late Cenozoic icehouse mode and the dawn of modern biota. The processes that caused these developments, and particularly the role of atmospheric CO2 as a forcing factor, are poorly understood. Here we present a CO2 record based on stomatal frequency data from multiple tree species. Our data show striking CO2 fluctuations of 􏰜600–300 parts per million by volume (ppmv). Periods of low CO2 are contemporaneous with major glaciations, whereas elevated CO2 of 500 ppmv coincides with the climatic optimum in the Miocene. Our data point to a long-term coupling between atmospheric CO2 and climate. Major changes in Miocene terrestrial ecosystems, such as the expansion of grasslands and radiations among terrestrial herbivores such as horses, can be linked to these marked fluctuations in CO2. atmospheric CO2 􏰚 fossil plants 􏰚 paleoclimates 􏰚 stomata 􏰚 C4 plants
Located in Resources / Climate Science Documents
File PDF document Higher effect of plant species diversity on productivity in natural than artificial ecosystems
Current and expected changes in biodiversity have motivated major experiments, which reported a positive relationship be- tween plant species diversity and primary production. As a first step in addressing this relationship, these manipulative experi- ments controlled as many potential confounding covariables as possible and assembled artificial ecosystems for the purpose of the experiments. As a new step in this endeavor, we asked how plant species richness relates to productivity in a natural ecosystem. Here, we report on an experiment conducted in a natural ecosys- tem in the Patagonian steppe, in which we assessed the biodiver- sity effect on primary production. Using a plant species diversity gradient generated by removing species while maintaining con- stant biomass, we found that aboveground net primary production increased with the number of plant species. We also found that the biodiversity effect was larger in natural than in artificial ecosys- tems. This result supports previous findings and also suggests that the effect of biodiversity in natural ecosystems may be much larger than currently thought. biodiversity 􏰚 carbon cycle 􏰚 ecosystem functioning 􏰚 Patagonian steppe 􏰚 resource partitioning
Located in Resources / Climate Science Documents
File PDF document Higher origination and extinction rates in larger mammals
Do large mammals evolve faster than small mammals or vice versa? Because the answer to this question contributes to our understanding of how life-history affects long-term and large-scale evolutionary patterns, and how microevolutionary rates scale-up to macroevolu- tionary rates, it has received much attention. A satisfactory or con- sistent answer to this question is lacking, however. Here, we take a fresh look at this problem using a large fossil dataset of mammals from the Neogene of the Old World (NOW). Controlling for sampling biases, calculating per capita origination and extinction rates of boundary-crossers and estimating survival probabilities using cap- ture-mark-recapture (CMR) methods, we found the recurring pattern that large mammal genera and species have higher origination and extinction rates, and therefore shorter durations. This pattern is surprising in the light of molecular studies, which show that smaller animals, with their shorter generation times and higher metabolic rates, have greater absolute rates of evolution. However, higher molecular rates do not necessarily translate to higher taxon rates because both the biotic and physical environments interact with phenotypic variation, in part fueled by mutations, to affect origina- tion and extinction rates. To explain the observed pattern, we propose that the ability to evolve and maintain behavior such as hibernation, torpor and burrowing, collectively termed ‘‘sleep-or- hide’’ (SLOH) behavior, serves as a means of environmental buffering during expected and unexpected environmental change. SLOH be- havior is more common in some small mammals, and, as a result, SLOH small mammals contribute to higher average survivorship and lower origination probabilities among small mammals. body size 􏰚 environmental buffering 􏰚 metabolism 􏰚 Neogene mammals 􏰚 turnover
Located in Resources / Climate Science Documents
File PDF document Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world
Excerpt from text : Because of the direct effect of CO2 and temperature on global food supplies, the influence of these changes on plant physiology and ecology is being actively studied (4–7). How these elements of global change may alter the interactions between plants and the insects that feed on them is relatively unknown. By bringing to light secrets contained in the fossil record, Currano et al. (8), published in this issue of PNAS, found that the amount and diversity of insect damage to plants increased in association with an abrupt rise in atmospheric CO2 and global temperature that occurred 􏰞55 million years ago. If the past is indeed a window to the future, their findings sug- gest that increased insect herbivory will be one more unpleasant surprise arising from anthropogenic climate change.
Located in Resources / Climate Science Documents