Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document COMMENTARY: Overshoot, adapt and recover
We will probably overshoot our current climate targets, so policies of adaptation and recovery need much more attention, say Martin Parry, Jason Lowe and Clair Hanson. FROM THE TEXT: “We should be planning to adapt to at least 4°C of warming.”
Located in Resources / Climate Science Documents
File PDF document Too much of a bad thing
There are various — and confusing — targets to limit global warming due to emissions of greenhouse gases. Estimates based on the total slug of carbon emitted are possibly the most robust, and are worrisome.
Located in Resources / Climate Science Documents
File PDF document ESSAY : The worst-case scenario
Stephen Schneider explores what a world with 1,000 parts per million of CO2 in its atmosphere might look like.
Located in Resources / Climate Science Documents
File PDF document The proportionality of global warming to cumulative carbon emissions
The global temperature response to increasing atmospheric CO2 is often quantified by metrics such as equilibrium climate sensitivity and transient climate response1. These approaches, however, do not account for carbon cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO2 emissions. Climate–carbon modelling experiments have shown that: (1) the warming per unit CO2 emitted does not depend on the background CO2 concentration2; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions3–5; and (3) the temperature response to a pulse of CO2 is approximately constant on timescales of decades to centuries3,6–8. Here we generalize these results and show that the carbon–climate response (CCR), defined as the ratio of temper- ature change to cumulative carbon emissions, is approximately independent of both the atmospheric CO2 concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0–2.1 6C per trillion tonnes of carbon (TtC) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate–carbon models. Uncertainty in land-use CO2 emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate– carbon models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and carbon cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, carbon sinks and climate–carbon feedbacks into a single quantity, the CCR allows CO2-induced global mean temperature change to be inferred directly from cumulative carbon emissions.
Located in Resources / Climate Science Documents
File PDF document Warming experiments underpredict plant phenological responses to climate change
Warming experiments are increasingly relied on to estimate plant responses to global climate change1,2. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing3–5. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.
Located in Resources / Climate Science Documents
File PDF document Approaching a state shift in Earth’s biosphere
Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale ‘tipping point’ highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.
Located in Resources / Climate Science Documents
File PDF document A global synthesis reveals biodiversity loss as a major driver of ecosystem change
Evidence is mounting that extinctions are altering key processes important to the productivity and sustainability of Earth’s ecosystems (1–4). Further species loss will accelerate change in ecosystem processes (5–8), but it is unclear how these effects compare to the direct effects of other forms of environmental change that are both driving diversity loss and altering ecosystem function. Here we use a suite of meta-analyses of published data to show that the effects of species loss on productivity and decomposition—two processes important in all ecosystems—are of comparable magnitude to the effects of many other global environmental changes. In experiments, intermediate levels of species loss (21–40%) reduced plant production by 5–10%, comparable to previously documented effects of ultraviolet radiation and climate warming. Higher levels of extinction (41–60%) had effects rivalling those of ozone, acidification, elevated CO2 and nutrient pollution. At intermediate levels, species loss generally had equal or greater effects on decomposition than did elevated CO2 and nitrogen addition. The identity of species lost also had a large effect on changes in productivity and decomposition, generating a wide range of plausible outcomes for extinction. Despite the need for more studies on interactive effects of diversity loss and environmental changes, our analyses clearly show that the ecosystem consequences of local species loss are as quantitatively significant as the direct effects of several global change stressors that have mobilized major international concern and remediation efforts (9).
Located in Resources / Climate Science Documents
File PDF document International trade drives biodiversity threats in developing nations
Human activities are causing Earth’s sixth major extinction event1— an accelerating decline of the world’s stocks of biological diversity at rates 100 to 1,000 times pre-human levels2. Historically, low-impact intrusion into species habitats arose from local demands for food, fuel and living space3. However, in today’s increasingly globalized economy, international trade chains accelerate habitat degradation far removed from the place of consumption. Although adverse effects of economic prosperity and economic inequality have been confirmed4,5, the importance of international trade as a driver of threats to species is poorly understood. Here we show that a signifi- cant number of species are threatened as a result of international trade along complex routes, and that, in particular, consumers in developed countries cause threats to species through their demand of commodities that are ultimately produced in developing countries. We linked 25,000 Animalia species threat records from the International Union for Conservation of Nature Red List to more than 15,000 commodities produced in 187 countries and evaluated more than 5billion supply chains in terms of their biodiversity impacts. Excluding invasive species, we found that 30% of global species threats are due to international trade. In many developed countries, the consumption of imported coffee, tea, sugar, textiles, fish and other manufactured items causes a biodiversity footprint that is larger abroad than at home. Our results emphasize the importance of examining biodiversity loss as a global systemic phe- nomenon, instead of looking at the degrading or polluting producers in isolation. We anticipate that our findings will facilitate better regulation, sustainable supply-chain certification and consumer product labelling.
Located in Resources / Climate Science Documents
File PDF document Biodiversity loss and its impact on humanity
The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.
Located in Resources / Climate Science Documents
File PDF document Probabilistic cost estimates for climate change mitigation
For more than a decade, the target of keeping global warming below 2 6C has been a key focus of the international climate debate1. In response, the scientific community has published a number of scenario studies that estimate the costs of achieving such a target 2–5. Producing these estimates remains a challenge, particularly because of relatively well known, but poorly quantified, uncertainties, and owing to limited integration of scientific knowledge across disciplines6. The integrated assessment community, on the one hand, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and asso- ciated costs2–4,7. The climate modelling community, on the other hand, has spent years improving its understanding of the geo- physical response of the Earth system to emissions of greenhouse gases8–12. This geophysical response remains a key uncertainty in the cost of mitigation scenarios but has been integrated with assess- ments of other uncertainties in only a rudimentary manner, that is, for equilibrium conditions6,13. Here we bridge this gap between the two research communities by generating distributions of the costs associated with limiting transient global temperature increase to below specific values, taking into account uncertainties in four factors: geophysical, technological, social and political. We find that political choices that delay mitigation have the largest effect on the cost–risk distribution, followed by geophysical uncertainties, social factors influencing future energy demand and, lastly, technological uncertainties surrounding the availability of greenhouse gas miti- gation options. Our information on temperature risk and mitigation costs provides crucial information for policy-making, because it clarifies the relative importance of mitigation costs, energy demand and the timing of global action in reducing the risk of exceeding a global temperature increase of 2 6C, or other limits such as 3 6C or 1.5 6C, across a wide range of scenarios.
Located in Resources / Climate Science Documents