Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Reconstruction of the history of anthropogenic CO2 concentrations in the ocean
The release of fossil fuel CO2 to the atmosphere by human activity has been implicated as the predominant cause of recent global climate change1. The ocean plays a crucial role in mitigating the effects of this perturbation to the climate system, sequestering 20 to 35 per cent of anthropogenic CO2 emissions2–4. Although much progress has been made in recent years in understanding and quantifying this sink, considerable uncertainties remain as to the distribution of anthropogenic CO2 in the ocean, its rate of uptake over the industrial era, and the relative roles of the ocean and terrestrial biosphere in anthropogenic CO2 sequestration. Here we address these questions by presenting an observationally based reconstruction of the spatially resolved, time-dependent history of anthropogenic carbon in the ocean over the industrial era. Our approach is based on the recognition that the transport of tracers in the ocean can be described by a Green’s function, which we estimate from tracer data using a maximum entropy deconvo- lution technique. Our results indicate that ocean uptake of anthro- pogenic CO2 has increased sharply since the 1950s, with a small decline in the rate of increase in the last few decades. We estimate the inventory and uptake rate of anthropogenic CO2 in 2008 at 140 6 25 Pg C and 2.3 6 0.6 Pg C yr21, respectively. We find that the Southern Ocean is the primary conduit by which this CO2 enters the ocean (contributing over 40 per cent of the anthro- pogenic CO2 inventory in the ocean in 2008). Our results also suggest that the terrestrial biosphere was a source of CO2 until the 1940s, subsequently turning into a sink. Taken over the entire industrial period, and accounting for uncertainties, we estimate that the terrestrial biosphere has been anywhere from neutral to a net source of CO2, contributing up to half as much CO2 as has been taken up by the ocean over the same period.
Located in Resources / Climate Science Documents
File PDF document Carbon in idle croplands
The collapse of the Soviet Union had diverse consequences, not least the abandonment of crop cultivation in many areas. One result has been the vast accumulation of soil organic carbon in the areas affected.
Located in Resources / Climate Science Documents
File PDF document A BURDEN BEYOND BEARING
The climate situation may be even worse than you think. In the first of three features, Richard Monastersky looks at evidence that keeping carbon dioxide beneath dangerous levels is tougher than previously thought.
Located in Resources / Climate Science Documents
File PDF document Carbon respiration from subsurface peat accelerated by climate warming in the subarctic
Among the largest uncertainties in current projections of future climate is the feedback between the terrestrial carbon cycle and climate1. Northern peatlands contain one-third of the world’s soil organic carbon, equivalent to more than half the amount of carbon in the atmosphere2. Climate-warming-induced acceleration of carbon dioxide (CO2) emissions through enhanced respiration of thick peat deposits, centuries to millennia old, may form a strong positive carbon cycle–climate feedback. The long-term temperature sensitivity of carbon in peatlands, especially at depth, remains uncertain, however, because of the short duration or correlative nature of field studies3–5 and the disturbance associated with respiration measurements below the surface in situ or during laboratory incubations6,7. Here we combine non-disturbing in situ measurements of CO2 respiration rates and isotopic (13C) composition of respired CO2 in two whole-ecosystem climate- manipulation experiments in a subarctic peatland. We show that approximately 1 6C warming accelerated total ecosystem respira- tion rates on average by 60% in spring and by 52% in summer and that this effect was sustained for at least eight years. While warm- ing stimulated both short-term (plant-related) and longer-term (peat soil-related) carbon respiration processes, we find that at least 69% of the increase in respiration rate originated from carbon in peat towards the bottom (25–50 cm) of the active layer above the permafrost. Climate warming therefore accelerates respiration of the extensive, subsurface carbon reservoirs in peat- lands to a much larger extent than was previously thought6,7. Assuming that our data from a single site are indicative of the direct response to warming of northern peatland soils on a global scale, we estimate that climate warming of about 1 6C over the next few decades could induce a global increase in heterotrophic respiration of 38–100 megatonnes of C per year. Our findings suggest a large, long-lasting, positive feedback of carbon stored in northern peatlands to the global climate system.
Located in Resources / Climate Science Documents
File PDF document Call for a climate culture shift
A new book describes the rapid reshaping of human priorities needed to save the planet from global warming. Some of that change is already under way at the community level, explains Robert Costanza.
Located in Resources / Climate Science Documents
File PDF document Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies
The transport of warm and salty Indian Ocean waters into the Atlantic Ocean—the Agulhas leakage—has a crucial role in the global oceanic circulation1 and thus the evolution of future climate. At present these waters provide the main source of heat and salt for the surface branch of the Atlantic meridional overturning circulation (MOC)2. There is evidence from past glacial-to-interglacial variations in foraminiferal assemblages3 and model studies4 that the amount of Agulhas leakage and its corresponding effect on the MOC has been subject to substantial change, potentially linked to latitudinal shifts in the Southern Hemisphere westerlies5. A pro- gressive poleward migration of the westerlies has been observed during the past two to three decades and linked to anthropogenic forcing6, but because of the sparse observational records it has not been possible to determine whether there has been a concomitant response of Agulhas leakage. Here we present the results of a high- resolution ocean general circulation model7,8 to show that the transport of Indian Ocean waters into the South Atlantic via the Agulhas leakage has increased during the past decades in response to the change in wind forcing. The increased leakage has contri- buted to the observed salinification 9 of South Atlantic thermocline waters. Both model and historic measurements off South America suggest that the additional Indian Ocean waters have begun to invade the North Atlantic, with potential implications for the future evolution of the MOC.
Located in Resources / Climate Science Documents
File PDF document A safe operating space for humanity
Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan RockstrÖm and colleagues.
Located in Resources / Climate Science Documents
File PDF document El Nino in a changing climate
El Nino events, characterized by anomalous warming in the eastern equatorial Pacific Ocean, have global climatic teleconnections and are the most dominant feature of cyclic climate variability on subdecadal timescales. Understanding changes in the frequency or characteristics of El Nino events in a changing climate is therefore of broad scientific and socioeconomic interest. Recent studies (1–5) show that the canonical El Nino has become less frequent and that a different kind of El Nino has become more common during the late twentieth century, in which warm sea surface temperatures (SSTs) in the central Pacific are flanked on the east and west by cooler SSTs. This type of El Nino, termed the central Pacific El Nino (CP-El Nino; also termed the dateline El Nino (2), El Nino Modoki (3) or a warm pool El Nino (5), differs from the canonical eastern Pacific El Nino (EP-El Nino) in both the location of maximum SST anomalies and tropical–midlatitude teleconnections. Here we show changes in the ratio of CP-El Nino to EP-El Nino under projected global EQ warming scenarios from the Coupled Model Intercomparison Project phase 3 multi-model data set (6). Using calculations based 10o S on historical El Nino indices, we find that projections of anthropogenic climate change are associated with an increased frequency of the CP-El Nino compared to the EP-El Nino. When restricted to the six climate models with the best representation of the twentieth-century ratio of CP-El Nino to EP-El Nino, the occurrence ratio of CP-El Nino/EP-El Nino is projected to increase as 10o N much as five times under global warming. The change is related to a flattening of the thermocline in the equatorial Pacific.
Located in Resources / Climate Science Documents
File PDF document The El Nino with a difference
Patterns of sea-surface warming and cooling in the tropical Pacific seem to be changing, as do the associated atmospheric effects. Increased global warming is implicated in these shifts in El Niño phenomena.
Located in Resources / Climate Science Documents
File PDF document CLIMATE’S SMOKY SPECTRE
With their focus on greenhouse gases, atmospheric scientists have largely overlooked lowly soot particles. But black carbon is now a hot topic among researchers and politicians.
Located in Resources / Climate Science Documents