Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Eads et al 2006.pdf
Located in Resources / TRB Library / DIN-ECO
File PDF document Eads et al 2007.pdf
Located in Resources / TRB Library / DIN-ECO
File PDF document Eads Layzer 2002.pdf
Located in Resources / TRB Library / DIN-ECO
File PDF document Early warning signals of extinction in deteriorating environments
During the decline to extinction, animal populations may present dynamical phenomena not exhibited by robust populations (1,2). Some of these phenomena, such as the scaling of demographic variance, are related to small size (3–6) whereas others result from density- dependent nonlinearities (7). Although understanding the causes of population extinction has been a central problem in theoretical biology for decades (8), the ability to anticipate extinction has remained elusive (9). Here we argue that the causes of a population’s decline are central to the predictability of its extinction. Specifically, environmental degradation may cause a tipping point in population dynamics, corresponding to a bifurcation in the underlying population growth equations, beyond which decline to extinction is almost certain. In such cases, imminent extinction will be signalled by critical slowing down (CSD) critical slowing down
Located in Resources / Climate Science Documents
File PDF document Early Warnings of Regime Shifts: A Whole-Ecosystem Experiment
Catastrophic ecological regime shifts may be announced in advance by statistical early warning signals such as slowing return rates from perturbation and rising variance. The theoretical background for these indicators is rich, but real-world tests are rare, especially for whole ecosystems. We tested the hypothesis that these statistics would be early warning signals for an experimentally induced regime shift in an aquatic food web. We gradually added top predators to a lake over 3 years to destabilize its food web. An adjacent lake was monitored simultaneously as a reference ecosystem. Warning signals of a regime shift were evident in the manipulated lake during reorganization of the food web more than a year before the food web transition was complete, corroborating theory for leading indicators of ecological regime shifts. Critical slowing down
Located in Resources / Climate Science Documents
File PDF document Earth system sensitivity inferred from Pliocene modelling and data
Here we use a coupled atmosphere–ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30–50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system.
Located in Resources / Climate Science Documents
Located in Site Images
Located in Site Images
Image East and Central Northern Deciduous Forests Lead Image
East and Central Northern Deciduous Forests Lead Image.
Located in WLFW-site-images
Organization East Gulf Coastal Plain Joint Venture
The East Gulf Coastal Plain Joint Venture (EGCPJV) is a self-directed partnership of 13 state, federal, private, and academic organizations working together to coordinate bird conservation efforts in the coastal plain of six southeastern states.
Located in LP Members / Organizations Search