Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document From Death Comes Life: Recovery and Revolution in the Wake of Epidemic Outbreaks of Mountain Pine Beetle
Excerpt : “Part of the initial increase in nutrients and moisture under dead and dying trees is due to reduced uptake,” Rhoades says. “But the sick and dead trees are also losing needles that fall to the ground and help retain soil moisture. And, as trees decay, they release nutrients back into the system.”
Located in Resources / Climate Science Documents
File PDF document Impacts Research Seen As Next Climate Frontier
Scientists hope the next U.S. president will devote more of the billion-dollar climate change research program to impacts SCIENCE VOL 322
Located in Resources / Climate Science Documents
File PDF document Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics
Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.
Located in Resources / Climate Science Documents
File PDF document Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA
We provide a century-scale view of small-mammal responses to global warming, without confounding effects of land-use change, by repeating Grinnell’s early–20th century survey across a 3000-meter-elevation gradient that spans Yosemite National Park, California, USA. Using occupancy modeling to control for variation in detectability, we show substantial (~500 meters on average) upward changes in elevational limits for half of 28 species monitored, consistent with the observed ~3°C increase in minimum temperatures. Formerly low-elevation species expanded their ranges and high-elevation species contracted theirs, leading to changed community composition at mid- and high elevations. Elevational replacement among congeners changed because species’ responses were idiosyncratic. Though some high-elevation species are threatened, protection of elevation gradients allows other species to respond via migration
Located in Resources / Climate Science Documents
File PDF document Biodiversity Under Global Change
Many common plant species, such as prairie grasses, have evolved traits for the efficient capture and use of two key resources that limit terrestrial productivity: nitrogen (N) and carbon dioxide (CO2). Over the past 60 years, human activity has vastly increased the availability of these resources. Atmospheric CO2 concentration has increased by 40%, and N availability has more than doubled. These changes are likely to have important consequences for species interactions, community structure, and ecosystem functioning. On page 1399 of this issue, Reich investigates one important consequence, biodiversity loss, based on a long-term elevated CO2 and nitrogen fertilization experiment.
Located in Resources / Climate Science Documents
File PDF document Peatland Response to Global Change
Peatlands can buffer the impact of external perturbations, but can also rapidly shift to a new ecosystem type, with large gains or losses of stored carbon. VOL 326 SCIENCE
Located in Resources / Climate Science Documents
File PDF document Amid Worrisome Signs of Warming, ‘Climate Fatigue’ Sets In
As scientists debate whether climate is changing faster than anticipated, some worry that a drumbeat of dire warnings may be helping to erode U.S. public concerns about global warming
Located in Resources / Climate Science Documents
File PDF document Biodiversity and Climate Change
Efforts to elucidate the effect of climate change on biodiversity with detailed data sets and refined models reach novel conclusions.
Located in Resources / Climate Science Documents
File PDF document Drought Sensitivity of the Amazon Rainforest
Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.
Located in Resources / Climate Science Documents
File PDF document The Genetic Architecture of Maize Flowering Time
Flowering time is a complex trait that controls adaptation of plants to their local environment in the outcrossing species Zea mays (maize). We dissected variation for flowering time with a set of 5000 recombinant inbred lines (maize Nested Association Mapping population, NAM). Nearly a million plants were assayed in eight environments but showed no evidence for any single largeeffect quantitative trait loci (QTLs). Instead, we identified evidence for numerous small-effect QTLs shared among families; however, allelic effects differ across founder lines. We identified no individual QTLs at which allelic effects are determined by geographic origin or large effects for epistasis or environmental interactions. Thus, a simple additive model accurately predicts flowering time for maize, in contrast to the genetic architecture observed in the selfing plant species rice and Arabidopsis.
Located in Resources / Climate Science Documents