Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Lessons about parks and poverty from a decade of forest loss and economic growth around Kibale National Park, Uganda
We use field data linked to satellite image analysis to examine the relationship between biodiversity loss, deforestation, and poverty around Kibale National Park (KNP) in western Uganda, 1996–2006. Over this decade, KNP generally maintained forest cover, tree species, and primate populations, whereas neighboring communal forest patches were reduced by half and showed substantial declines in tree species and primate populations. However, a bad decade for forest outside the park proved a prosperous one for most local residents. Panel data for 252 households show substantial improvement in welfare indicators (e.g., safer water, more durable roof material), with the greatest increases found among those with highest initial assets. A combination of regression analysis and matching estimators shows that although the poor tend to be located on the park perimeter, proximity to the park has no measureable effect on growth of productive assets. The risk for land loss among the poor was inversely correlated with proximity to the park, initial farm size, and decline in adjacent communal forests. We conclude the current disproportionate presence of poor households at the edge of the park does not signal that the park is a poverty trap. Rather, Kibale appears to provide protection against desperation sales and farm loss among those most vulnerable. conservation | tropical forest | protected areas | economic development
Located in Resources / Climate Science Documents
File PDF document Joint analysis of stressors and ecosystem services to enhance restoration effectiveness
With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large- scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near- shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many impor- tant areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments. Laurentian Great Lakes | cumulative impact | marine spatial planning | fresh water
Located in Resources / Climate Science Documents
File PDF document Area–heterogeneity tradeoff and the diversity of ecological communities
For more than 50 y ecologists have believed that spatial heterogeneity in habitat conditions promotes species richness by increasing opportunities for niche partitioning. However, a recent stochastic model combining the main elements of niche theory and island biogeography theory suggests that environmental heterogeneity has a general unimodal rather than a positive effect on species richness. This result was explained by an inherent tradeoff between environmental heterogeneity and the amount of suitable area available for individual species: for a given area, as heterogeneity increases, the amount of effective area available for individual species decreases, thereby reducing population sizes and increasing the likelihood of stochastic extinctions. Here we provide a comprehensive evaluation of this hypothesis. First we analyze an extensive database of breeding bird distribution in Catalonia and show that patterns of species richness, species abundance, and extinction rates are consistent with the predictions of the area–heterogeneity tradeoff and its proposed mechanisms. We then perform a metaanalysis of heterogeneity–diversity relationships in 54 published datasets and show that empirical data better fit the unimodal pattern predicted by the area–heterogeneity tradeoff than the positive pattern predicted by classic niche theory. Simulations in which species may have variable niche widths along a continuous environmental gradient are consistent with all empirical findings. The area–heterogeneity tradeoff brings a unique perspective to current theories of species diversity and has important implications for biodiversity conservation.
Located in Resources / Climate Science Documents
File PDF document Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling
Although temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photo- periodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO2 cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photo- period-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% (∼4 PgC y−1), result- ing in a >3% (∼2 PgC y−1) decrease of net primary production. Such a correction is also needed in models estimating current carbon up- take based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence. day length | gross primary productivity | carbon sequestration | leaf area index | evapotranspiration
Located in Resources / Climate Science Documents
File PDF document Ramification of stream networks
The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification—the mechanism of branching by which such networks grow—remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2π/5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km2 groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves. river networks | network growth | Laplacian growth
Located in Resources / Climate Science Documents
File PDF document Perception of climate change
“Climate dice,” describing the chance of unusually warm or cool seasons, have become more and more “loaded” in the past 30 y, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3σ) warmer than the climatology of the 1951–1980 base period. This hot extreme, which covered much less than 1% of Earth’s surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change. climate impacts ∣ climate anomalies ∣ heat waves
Located in Resources / Climate Science Documents
File PDF document Resource diversity and landscape-level homogeneity drive native bee foraging
Given widespread declines in pollinator communities and increas- ing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previ- ously believed and does not follow a simple optimal foraging strat- egy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Further- more, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Over- all, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services. dispersal | ecosystem services | resource dynamics | spatial ecology | urban
Located in Resources / Climate Science Documents
File PDF document Transformational adaptation when incremental adaptations to climate change are insufficient
All human–environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations.
Located in Resources / Climate Science Documents
File PDF document Economic growth and the human lot
1st paragraph: In 1974, Richard A. Easterlin, a coauthor of the work by Easterlin et al. (1) in PNAS, published a seminal article (2) that has generated a huge literature. It sought to explain why the happiness score in the United States (and elsewhere) had stayed roughly constant, whereas income per capita had trended up. This evidence has come to be known as the Easterlin Paradox. His explanation was that economic growth has a positive effect on happiness with other things being equal; however, it also raises aspirations, and aspirations have a negative effect. Aspirations are determined by society, particularly reference group income. The combination of these two effects gives rise to a Hedonic Treadmill.
Located in Resources / Climate Science Documents
File PDF document Developing a broader scientific foundation for river restoration: Columbia River food webs
Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure—without explicitly considering food webs—has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management.
Located in Resources / Climate Science Documents