Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Consequences of widespread tree mortality triggered by drought and temperature stress
Forests provide innumerable ecological, societal and climatological benefits, yet they are vulnerable to drought and temperature extremes. Climate-driven forest die-off from drought and heat stress has occurred around the world, is expected to increase with climate change and probably has distinct consequences from those of other forest disturbances. We examine the consequences of drought- and climate-driven widespread forest loss on ecological communities, ecosystem functions, ecosystem services and land–climate interactions. Furthermore, we highlight research gaps that warrant study. As the global climate continues to warm, understanding the implications of forest loss triggered by these events will be of increasing importance.
Located in Resources / Climate Science Documents
File PDF document A drought-induced pervasive increase in tree mortality across Canada’s boreal forests
Drought-induced tree mortality is expected to increase worldwide under projected future climate changes (1–4). The Canadian boreal forests, which occupy about 30% of the boreal forests worldwide and 77% of Canada’s total forested land, play a critical role in the albedo of Earth’s surface (5) and in its global carbon budget (6). Many of the previously reported regional-scale impacts of drought on tree mortality have affected low- and middle-latitude tropical regions (2) and the temperate forests of the western United States (3), but no study has examined high-latitude boreal regions with multiple species at a regional scale using long-term forest permanent sampling plots (7–9). Here, we estimated tree mortality in natural stands throughout Canada’s boreal forests using data from the permanent sampling plots and statistical models. We found that tree mortality rates increased by an overall average of 4.7%yr−1 from 1963 to 2008, with higher mortality rate increases in western regions than in eastern regions (about 4.9 and 1.9% yr−1 ,respectively).The water stress created by regional drought may be the dominant contributor to these widespread increases in tree mortality rates across tree species, sizes, elevations, longitudes and latitudes. Western Canada seems to have been more sensitive to drought than eastern Canada.
Located in Resources / Climate Science Documents
File PDF document An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot
Extreme climatic events, such as heat waves, are predicted to increase in frequency and magnitude as a consequence of global warming but their ecological effects are poorly understood, particularly in marine ecosystems1–3. In early 2011, the marine ecosystems along the west coast of Australia -- a global hotspot of biodiversity and endemism 4,5 -- experienced the highest-magnitude warming event on record. Sea temperatures soared to unprecedented levels and warming anomalies of 2–4 ◦ C persisted for more than ten weeks along >2,000 km of coastline. We show that biodiversity patterns of temperate seaweeds, sessile invertebrates and demersal fish were significantly different after the warming event, which led to a reduction in the abundance of habitat-forming seaweeds and a subsequent shift in community structure towards a depauperate state and a tropicalization of fish communities. We conclude that extreme climatic events are key drivers of biodiversity patterns and that the frequency and intensity of such episodes have major implications for predictive models of species distribution and ecosystem structure, which are largely based on gradual warming trends.
Located in Resources / Climate Science Documents
File PDF document Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss
Climate change is expected to have significant influences on terrestrial biodiversity at all system levels, including species-level reductions in range size and abundance, especially amongst endemic species1–6. However, little is known about how mitigation of greenhouse gas emissions could reduce biodiversity impacts, particularly amongst common and widespread species. Our global analysis of future climatic range change of common and widespread species shows that without mitigation, 57 ± 6% of plants and 34 ± 7%of animals are likely to lose ≥50% of their present climatic range by the 2080s. With mitigation, however, losses are reduced by 60% if emissions peak in 2016 or 40% if emissions peak in 2030. Thus, our analyses indicate that without mitigation, large range contractions can be expected even amongst common and widespread species, amounting to a substantial global reduction in biodiversity and ecosystem services by the end of this century. Prompt and stringent mitigation, on the other hand, could substantially reduce range losses and buy up to four decades for climate change adaptation.
Located in Resources / Climate Science Documents
File PDF document Editorial : Half-hearted engineering
Climate warming is not the only consequence of rising levels of atmospheric greenhouse gases. The only way to counter all effects, including those on rainfall and ocean acidity, is to remove carbon from the climate system. Arguably, some of the most immediate impacts of a warming climate will result from shifts in global rainfall patterns. The potential threats are diverse, and include water scarcity in the lush Amazonian rainforest; increased drought in the already parched southwestern United States; rainfall replacing snow in low-latitude mountain regions; and a rise in flooding in temperate climates. Whatever the exact outcome of these threats, the stability of the world’s economy and ecosystem both depend on maintaining precipitation patterns more or less as they are today.
Located in Resources / Climate Science Documents
File PDF document Stronger winds over a large lake in response to weakening air-to-lake temperature gradient
The impacts of climate change on the world’s large lakes are a cause for concern1–4. For example, over the past decades, mean surface water temperatures in Lake Superior, North America, have warmed faster than air temperature during the thermally stratified summer season, because decreasing ice cover has led to increased heat input2,5. However, the effects of this change on large lakes have not been studied extensively6. Here we analyse observations from buoys and satellites as well as model reanalyses for Lake Superior, and find that increasing temperatures in both air and surface water, and a reduction in the temperature gradient between air and water are destabilizing the atmospheric surface layer above the lake. As a result, surface wind speeds above the lake are increasing by nearly 5% per decade, exceeding trends in wind speed over land. A numerical model of the lake circulation suggests that the increasing wind speeds lead to increases in current speeds, and long-term warming causes the surface mixed layer to shoal and the season of stratification to lengthen. We conclude that climate change will profoundly affect the biogeochemical cycles of large lakes, the mesoscale atmospheric circulation at lake–land boundaries and the transport of airborne pollutants in regions that are rich in lakes.
Located in Resources / Climate Science Documents
File PDF document Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance
Climate change negotiations aim to reduce net greenhouse-gas emissions by encouraging direct reductions of emissions and crediting countries for their terrestrial greenhouse-gas sinks. Ecosystem carbon dioxide uptake has offset nearly 10% of Europe’s fossil fuel emissions, but not all of this may be creditable under the rules of the Kyoto Protocol. Although this treaty recognizes the importance of methane and nitrous oxide emissions, scientific research has largely focused on carbon dioxide. Here we review recent estimates of European carbon dioxide, methane and nitrous oxide fluxes between 2000 and 2005, using both top-down estimates based on atmospheric observations and bottom-up estimates derived from ground-based measure- ments. Both methods yield similar fluxes of greenhouse gases, suggesting that methane emissions from feedstock and nitrous oxide emissions from arable agriculture are fully compensated for by the carbon dioxide sink provided by forests and grass- lands. As a result, the balance for all greenhouse gases across Europe’s terrestrial biosphere is near neutral, despite carbon sequestration in forests and grasslands. The trend towards more intensive agriculture and logging is likely to make Europe’s land surface a significant source of greenhouse gases. The development of land management policies which aim to reduce greenhouse-gas emissions should be a priority.
Located in Resources / Climate Science Documents
File PDF document commentary: the case for mandatory sequestration
the fact that cumulative carbon dioxide emissions are more important than annual emission rates calls for a fresh approach to climate change mitigation. one option would be a mandatory link between carbon sequestration and fossil fuel extraction. FROM THE TEXT: With current emissions around 10 billion tonnes of carbon per year, and over three trillon tonnes still available in fossil fuel reserves (4,11), emissions need to fall,on average, by over 2% per year from now on to avoid releasing the trillionth tonne.The longer emissions are allowed to rise, the faster they will have to fall thereafter to stay within the same cumulative total.
Located in Resources / Climate Science Documents
File PDF document Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation
Anthropogenic greenhouse-gas emissions continue to increase rapidly despite efforts aimed at curbing the release of such gases. One potentially long-term solution for offsetting these emissions is the capture and storage of carbon dioxide. In principle, fluid or gaseous carbon dioxide can be injected into the Earth’s crust and locked up as carbonate minerals through chemical reactions with calcium and magnesium ions supplied by silicate minerals. This process can lead to near-permanent and secure sequestration, but its feasibility depends on the ease and vigour of the reactions. Laboratory studies as well as natu- ral analogues indicate that the rate of carbonate mineral formation is much higher in host rocks that are rich in magnesium- and calcium-bearing minerals. Such rocks include, for example, basalts and magnesium-rich mantle rocks that have been emplaced on the continents. Carbonate mineral precipitation could quickly clog up existing voids, presenting a challenge to this approach. However, field and laboratory observations suggest that the stress induced by rapid precipitation may lead to fracturing and subsequent increase in pore space. Future work should rigorously test the feasibility of this approach by addressing reaction kinetics, the evolution of permeability and field-scale injection methods.
Located in Resources / Climate Science Documents
File PDF document Southward movement of the Pacific intertropical convergence zone AD 1400–1850
Tropical rainfall patterns control the subsistence lifestyle of more than one billion people. Seasonal changes in these rainfall patterns are associated with changes in the position of the intertropical convergence zone, which is characterized by deep convection causing heavy rainfall near 10◦ N in boreal summer and 3◦ N in boreal winter. Dynamic controls on the position of the intertropical convergence zone are debated, but palaeoclimatic evidence from continental Asia, Africa and the Americas suggests that it has shifted substantially during the past millennium, reaching its southernmost position some time during the Little Ice Age (AD 1400–1850). However, without records from the meteorological core of the intertropical convergence zone in the Pacific Ocean, quantitative constraints on its position are lacking. Here we report microbiological, molecular and hydrogen isotopic evidence from lake sediments in the Northern Line Islands, Galápagos and Palau indicating that the Pacific intertropical convergence zone was south of its modern position for most of the past millennium, by as much as 500 km during the Little Ice Age. A colder Northern Hemisphere at that time, possibly resulting from lower solar irradiance, may have driven the intertropical convergence zone south. We conclude that small changes in Earth’s radiation budget may profoundly affect tropical rainfall.
Located in Resources / Climate Science Documents