Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Mountain landscapes offer few opportunities for high-elevation tree species migration
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep cli- mate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evalu- ated the climatic suitability of four coniferous forest tree species of the western United States based on species distri- bution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an exten- sive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree spe- cies dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examin- ing species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Cli- matic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes. Keywords: climate change, demography, dominance, forest inventory and analysis, productivity, suitability, tree species, upslope migration
Located in Resources / Climate Science Documents
File PDF document Divergent phenological response to hydroclimate variability in forested mountain watersheds
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins’ Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnos- tic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. Keywords: drought deciduousness, hydroclimate variability, landscape phenology, MODIS NDVI, topoclimate gradient
Located in Resources / Climate Science Documents
File PDF document Trend changes in global greening and browning: contribution of short-term trends to longer-term change
Field observations and time series of vegetation greenness data from satellites provide evidence of changes in terres- trial vegetation activity over the past decades for several regions in the world. Changes in vegetation greenness over time may consist of an alternating sequence of greening and/or browning periods. This study examined this effect using detection of trend changes in normalized difference vegetation index (NDVI) satellite data between 1982 and 2008. Time series of 648 fortnightly images were analyzed using a trend breaks analysis (BFAST) procedure. Both abrupt and gradual changes were detected in large parts of the world, especially in (semi-arid) shrubland and grass- land biomes where abrupt greening was often followed by gradual browning. Many abrupt changes were found around large-scale natural influences like the Mt Pinatubo eruption in 1991 and the strong 1997/98 El Nin ̃o event. The net global figure – considered over the full length of the time series – showed greening since the 1980s. This is in line with previous studies, but the change rates for individual short-term segments were found to be up to five times higher. Temporal analysis indicated that the area with browning trends increased over time while the area with greening trends decreased. The Southern Hemisphere showed the strongest evidence of browning. Here, periods of gradual browning were generally longer than periods of gradual greening. Net greening was detected in all biomes, most conspicuously in croplands and least conspicuously in needleleaf forests. For 15% of the global land area, trends were found to change between greening and browning within the analysis period. This demonstrates the importance of accounting for trend changes when analyzing long-term NDVI time series. Keywords: GIMMS NDVI, global greening and browning, gradual and abrupt change detection, time series analysis, trend breaks
Located in Resources / Climate Science Documents
File PDF document Increasing soil methane sink along a 120-year afforestation chronosequence is driven by soil moisture
Upland soils are important sinks for atmospheric methane (CH4), a process essentially driven by methanotrophic bacteria. Soil CH4 uptake often depends on land use, with afforestation generally increasing the soil CH4 sink. How- ever, the mechanisms driving these changes are not well understood to date. We measured soil CH4 and N2O fluxes along an afforestation chronosequence with Norway spruce (Picea abies L.) established on an extensively grazed subal- pine pasture. Our experimental design included forest stands with ages ranging from 25 to >120 years and included a factorial cattle urine addition treatment to test for the sensitivity of soil CH4 uptake to N application. Mean CH4 uptake significantly increased with stand age on all sampling dates. In contrast, CH4 oxidation by sieved soils incu- bated in the laboratory did not show a similar age dependency. Soil CH4 uptake was unrelated to soil N status (but cattle urine additions stimulated N2O emission). Our data indicated that soil CH4 uptake in older forest stands was driven by reduced soil water content, which resulted in a facilitated diffusion of atmospheric CH4 into soils. The lower soil moisture likely resulted from increased interception and/or evapotranspiration in the older forest stands. This mechanism contrasts alternative explanations focusing on nitrogen dynamics or the composition of methano- trophic communities, although these factors also might be at play. Our findings further imply that the current dramatic increase in forested area increases CH4 uptake in alpine regions. Keywords: afforestation, alpine regions, chronosequence, fertilization, methane oxidation, nitrous oxide, Norway spruce, soil moisture regime
Located in Resources / Climate Science Documents
File PDF document Rethinking species’ ability to cope with rapid climate change
Ongoing climate change is assumed to be exceptional because of its unprecedented velocity. However, new geophysical research suggests that dramatic climatic changes during the Late Pleistocene occurred extremely rapid, over just a few years. These abrupt climatic changes may have been even faster than contemporary ones, but relatively few continent-wide extinctions of species have been documented for these periods. This raises questions about the ability of extant species to adapt to ongoing climate change. We propose that the advances in geophysical research challenge current views about species’ ability to cope with climate change, and that lessons must be learned for modelling future impacts of climate change on species. Keywords: adaptation, biodiversity, dispersal, extinction, habitat fragmentation, phenotypic plasticity, rapid climate change
Located in Resources / Climate Science Documents
File PDF document Biogenic vs. geologic carbon emissions and forest biomass energy production
n the current debate over the CO2 emissions implications of switching from fossil fuel energy sources to include a substantial amount of woody biomass energy, many scientists and policy makers hold the view that emissions from the two sources should not be equated. Their rationale is that the combustion or decay of woody biomass is simply part of the global cycle of biogenic carbon and does not increase the amount of carbon in circulation. This view is frequently presented as justification to implement policies that encourage the substitution of fossil fuel energy sources with biomass. We present the opinion that this is an inappropriate conceptual basis to assess the atmospheric greenhouse gas (GHG) accounting of woody biomass energy generation. While there are many other environmental, social, and economic reasons to move to woody biomass energy, we argue that the inferred benefits of biogenic emissions over fossil fuel emissions should be reconsidered. Keywords: bioenergy emissions, biogenic carbon, carbon debt, forest biomass, greenhouse gas accounting
Located in Resources / Climate Science Documents
File PDF document The outcome is in the assumptions: analyzing the effects on atmospheric CO2 levels of increased use of bioenergy from forest biomass
Recently, several studies have quantified the effects on atmospheric CO2 concentration of an increased harvest level in forests. Although these studies agreed in their estimates of forest productivity, their conclusions were contradictory. This study tested the effect of four assumptions by which those papers differed. These assump- tions regard (1) whether a single or a set of repeated harvests were considered, (2) at what stage in stand growth harvest takes place, (3) how the baseline is constructed, and (4) whether a carbon-cycle model is applied. A main finding was that current and future increase in the use of bioenergy should be studied considering a series of repeated harvests. Moreover, the time of harvest should be determined based on economical principles, thus taking place before stand growth culminates, which has implications for the design of the baseline scenario. When the most realistic assumptions are used and a carbon-cycle model is applied, an increased harvest level in forests leads to a permanent increase in atmospheric CO2 concentration. Keywords: atmosphere, bioenergy, carbon, climate change, Faustmann, impulse response functions
Located in Resources / Climate Science Documents
File PDF document Mineral soil carbon fluxes in forests and implications for carbon balance assessments
Forest carbon cycles play an important role in efforts to understand and mitigate climate change. Large amounts of carbon (C) are stored in deep mineral forest soils, but are often not considered in accounting for global C fluxes because mineral soil C is commonly thought to be relatively stable. We explore C fluxes associated with forest management practices by examining existing data on forest C fluxes in the northeastern US. Our findings demonstrate that mineral soil C can play an important role in C emissions, especially when considering inten- sive forest management practices. Such practices are known to cause a high aboveground C flux to the atmo- sphere, but there is evidence that they can also promote comparably high and long-term belowground C fluxes. If these additional fluxes are widespread in forests, recommendations for increased reliance on forest biomass may need to be reevaluated. Furthermore, existing protocols for the monitoring of forest C often ignore mineral soil C due to lack of data. Forest C analyses will be incomplete until this problem is resolved. Keywords: carbon accounting, deep soil mineral carbon, Forest carbon pool assessments, forest soil, stand level carbon dynamics
Located in Resources / Climate Science Documents
File PDF document Methane emissions from sheep pasture, measured with an open-path eddy covariance system
Methane (CH4) is an important greenhouse gas, contributing 0.4–0.5 W m␣2 to global warming. Methane emissions originate from several sources, including wetlands, rice paddies, termites and ruminating animals. Previous measure- ments of methane flux from farm animals have been carried out on animals in unnatural conditions, in laboratory chambers or fitted with cumbersome masks. This study introduces eddy covariance measurements of CH4, using the newly developed LI-COR LI-7700 open-path methane analyser, to measure field-scale fluxes from sheep grazing freely on pasture. Under summer conditions, fluxes of methane in the morning averaged 30 nmol m␣2 s␣1, whereas those in the afternoon were above 100 nmol m␣2 s␣1, and were roughly two orders of magnitude larger than the small methane emissions from the soil. Methane emissions showed no clear relationship with air temperature or photo- synthetically active radiation, but some diurnal pattern was apparent, probably linked to sheep grazing behaviour and metabolism. Over the measurement period (days 60–277, year 2010), cumulative methane fluxes were 0.34 mol CH4 m␣2, equating to 134.3 g CO2 equivalents m␣2. By comparison, a carbon dioxide (CO2) sink of 819 g CO2 equivalents m␣2 was measured over the same period, but it is likely that much of this would be released back to the atmosphere during the winter or as off-site losses (through microbial and animal respiration). By dividing methane fluxes by the number of sheep in the field each day, we calculated CH4 emissions per head of livestock as 7.4 kg CH4 sheep␣1 yr␣1, close to the published IPCC emission factor of 8 kg CH4 sheep␣1 yr␣1. Keywords: agriculture, carbon sink, closed path, CO2 flux, global warming potential, grassland, grazing, grazing system
Located in Resources / Climate Science Documents
File PDF document Temperature-growth divergence in white spruce forests of Old Crow Flats, Yukon Territory, and adjacent regions of northwestern North America
We present a new 23-site network of white spruce ring-width chronologies near boreal treeline in Old Crow Flats, Yukon Territory, Canada. Most chronologies span the last 300 years and some reach the mid-16th century. The chro- nologies exhibit coherent growth patterns before the 1930s. However, since the 1930s, they diverge in trend and exhibit one of two contrasting, but well-replicated patterns we call Group 1 and Group 2. Over the instrumental per- iod (1930–2007) Group 1 sites were inversely correlated with previous-year July temperatures while Group 2 sites were positively correlated with growth-year June temperatures. At the broader northwestern North America (NWNA) scale, we find that the Group 1 and Group 2 patterns are common to a number of white spruce chronolo- gies, which we call NWNA 1 and NWNA 2 chronologies. The NWNA 1 and NWNA 2 chronologies also share a sin- gle coherent growth pattern prior to their divergence (ca. 1950s). Comparison of the NWNA 1/NWNA 2 chronologies against gridded 20th-century temperatures for NWNA and reconstructed northern hemisphere sum- mer temperatures (AD 1300–2000) indicates that all sites responded positively to temperature prior to the mid-20th century (at least back to AD 1300), but that some changed to a negative response (NWNA 1) while others maintained a positive response (NWNA 2). The spatial extent of divergence implies a large-scale forcing. As the divergence appears to be restricted to the 20th century, we suggest that the temperature response shift represents a moisture stress caused by an anomalously warm, dry 20th-century climate in NWNA, as indicated by paleoclimatic records. However, because some sites do not diverge and are located within a few kilometres of divergent sites, we specu- late that site-level factors have been important in determining the susceptibility of sites to the large-scale drivers of divergence. Keywords: boreal treeline, dendroclimatology, divergence, Old Crow Flats, ring-width, white spruce, Yukon Territory
Located in Resources / Climate Science Documents