Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Limits to adaptation
An actor-centered, risk-based approach to defining limits to social adaptation provides a useful analytic framing for identifying and anticipating these limits and informing debates over society’s responses to climate change.
Located in Resources / Climate Science Documents
File Rapid evolution of flowering time by an annual plant in response to a climate fluctuation
Ongoing climate change has affected the ecological dynamics of many species and is expected to impose natural selection on ecologically important traits. Droughts and other anticipated changes in precipitation may be particularly potent selective fac- tors, especially in arid regions. Here we demonstrate the evolutionary response of an annual plant, Brassica rapa, to a recent climate fluctuation resulting in a multiyear drought. Ancestral (predrought) genotypes were recovered from stored seed and raised under a set of common environments with descendant (postdrought) genotypes and with ancestor􏰶descendant hybrids. As predicted, the abbreviated growing seasons caused by drought led to the evolution of earlier onset of flowering. Descendants bloomed earlier than ancestors, advancing first flowering by 1.9 days in one study population and 8.6 days in another. The inter- mediate flowering time of ancestor􏰶descendant hybrids supports an additive genetic basis for divergence. Experiments confirmed that summer drought selected for early flowering, that flowering time was heritable, and that selection intensities in the field were more than sufficient to account for the observed evolutionary change. Natural selection for drought escape thus appears to have caused adaptive evolution in just a few generations. A systematic effort to collect and store propagules from suitable species would provide biologists with materials to detect and elucidate the genetic basis of further evolutionary shifts driven by climate change. contemporary evolution 􏰧 global climate change 􏰧 life history theory 􏰧 local adaptation 􏰧 plant phenology
Located in Resources / Climate Science Documents
File PDF document Two Modes of North American Drought from Instrumental and Paleoclimatic Data*
Droughts, which occur as a part of natural climate variability, are expected to increase in frequency and/or severity with global climate change. An improved understanding of droughts and their association with atmospheric circulation will add to the knowledge about the controls on drought, and the ways in which changes in climate may impact droughts. In this study, 1) major drought patterns across the United States have been defined, 2) the robustness of these patterns over time using tree-ring-based drought reconstructions have been evaluated, and 3) the drought patterns with respect to global atmospheric pressure patterns have been assessed. From this simple assessment, it is suggested that there are two major drought patterns across North America, which together account for about 30% of the total variance in drought patterns—one resembles the classic ENSO teleconnection, and the other displays an east–west drought dipole. The same two patterns are evident in the instrumental data and the reconstructed drought data for two different periods, 1404–2003 and 900–1350. The 500-mb circulation patterns associated with the two drought patterns suggest that the controls on drought may come from both Northern Hemisphere and tropical sources. The two drought patterns, and presumably their associated circulation patterns, vary in strength over time, indicating the combined effects of the two patterns on droughts over the past millennium.
Located in Resources / Climate Science Documents
File PDF document Extreme Weather Events in Europe: preparing for climate change adaptation
This study arises from the concern that changes in weather patterns will be one of the principal effects of climate change and with these will come extreme weather. This is of considerable consequence in Europe as it impacts on the vulnerability of communities across the continent and exposes them to environmental risks. It is now widely recognised that failures in international efforts to agree on the action necessary to limit global climate change mean that adaptation to its consequences is necessary and unavoidable (Solomon et al., 2007). The changes anticipated in the occurrence and character of extreme weather events are, in many cases, the dominant factor in designing adaptation measures. Policy communities within the EU have begun to consider appropriate responses to these changes and an EU adaptation strategy is under active development and implementation. There are also sectoral EU initiatives, for example on water shortages and heat waves, and, at a regional level, on planning for floods and storms. The basic and unavoidable challenge for decision makers is to find workable and cost-effective solutions when faced with increased probabilities of very costly adverse impacts. Information about the nature and scale of these changes is essential to guide decisions on appropriate solutions. Agenda-setting for climate change and adaptation has to take place in a social or/and political setting. Scientific information about temporal changes in the probability distributions of extreme weather events over Europe, the main focus of this report, is important for informing the social and political processes that it is hoped will lead to adequate climate-change adaptation measures in Europe. This report is focused on providing a working-level assessment of the current state of the quantitative understanding of relevant extreme weather phenomena and their impacts.
Located in Resources / Climate Science Documents
File PDF document Functional response of U.S. grasslands to the early 21st-century drought
Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that are similar to those expected with future climate change. We investigated the impact of the early 21st-century drought on aboveground net primary production (ANPP) of six desert and plains grasslands dominated by C4 (warm season) grasses in terms of significant deviations between observed and expected ANPP. In desert grasslands, drought-induced grass mortality led to shifts in the functional response to annual total precipitation (PT), and in some cases, new species assemblages occurred that included invasive species. In contrast, the ANPP in plains grasslands exhibited a strong linear function of the current-year PT and the previous-year ANPP, despite prolonged warm drought. We used these results to disentangle the impacts of interannual total precipitation, intra-annual precipitation patterns, and grassland abundance on ANPP, and thus generalize the functional response of C4 grasslands to predicted climate change. This will allow managers to plan for predictable shifts in resources associated with climate change related to fire risk, loss of forage, and ecosystem services. Key words: climate change; desert; extreme events; grassland production; invasive species; plains; precipitation variability; resilience; warm drought.
Located in Resources / Climate Science Documents
File PDF document A dispersal-induced paradox: synchrony and stability in stochastic metapopulations
Understanding how dispersal influences the dynamics of spatially distributed populations is a major priority of both basic and applied ecologists. Two well-known effects of dispersal are spatial synchrony (positively correlated population dynamics at different points in space) and dispersal-induced stability (the phenomenon whereby populations have simpler or less extinction-prone dynamics when they are linked by dispersal than when they are isolated). Although both these effects of dispersal should occur simultaneously, they have primarily been studied separately. Herein, I summarise evidence from the literature that these effects are expected to interact, and I use a series of models to characterise that interaction. In particular, I explore the observation that although dispersal can promote both synchrony and stability singly, it is widely held that synchrony paradoxically prevents dispersal-induced stability. I show here that in many realistic scenarios, dispersal is expected to promote both synchrony and stability at once despite this apparent destabilising influence of synchrony. This work demonstrates that studying the spatial and temporal impacts of dispersal together will be vital for the conservation and management of the many communities for which human activities are altering natural dispersal rates. Keywords Autoregressive model, correlated environmental stochasticity, dispersal, dispersal-induced stability, metapopulation, negative binomial model, Ricker model, spatial heterogeneity, synchrony.
Located in Resources / Climate Science Documents
File PDF document Changes in forest productivity across Alaska consistent with biome shift
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal–tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline.
Located in Resources / Climate Science Documents
File PDF document The cost of policy simplification in conservation incentive programs
Incentive payments to private landowners provide a common strategy to conserve biodiversity and enhance the supply of goods and services from ecosystems. To deliver cost-effective improvements in biodiversity, payment schemes must trade-off inefficiencies that result from over-simplified policies with the administrative burden of implementing more complex incentive designs. We examine the effectiveness of different payment schemes using field parameterized, ecological economic models of extensive grazing farms. We focus on profit maximising farm management plans and use bird species as a policy-relevant indicator of biodiversity. Common policy simplifications result in a 49–100% loss in biodiversity benefits depending on the conservation target chosen. Failure to differentiate prices for conservation improvements in space is particularly problematic. Additional implementation costs that accompany more complicated policies are worth bearing even when these constitute a substantial proportion (70% or more) of the payments that would otherwise have been given to farmers. Keywords Agriculture, agri-environment scheme, biodiversity, cost-effectiveness, ecological economics, grazing, incentive
Located in Resources / Climate Science Documents
File PDF document Economic growth as the limiting factor for wildlife conservation
The concept of limiting factor includes the lack of welfare factors and the presence of decimating factors. Originally applied to populations and species, the concept may also be applied to wildlife in the aggregate. Because the decimating factor of economic growth eliminates welfare factors for virtually all imperiled species via the principle of competitive exclusion, economic growth may be classified as the limiting factor for wildlife conservation. The wildlife profes- sion has been virtually silent about this limiting factor, suggesting that the pro- fession has been laboring in futility. The public, exhorted by neoclassical economists and political leaders, supports economic growth as a national goal. To address the limiting factor for wildlife conservation, wildlife professionals need to become versed in the history of economic growth theory, neoclassical economic growth theory, and the alternative growth paradigm provided by ecological economics. The Wildlife Society should lead the natural resources professions in developing a position on economic growth. carrying capacity, competitive exclusion, ecological economics, economic growth, limiting factor, neoclassical economics, niche breadth, steady state economy
Located in Resources / Climate Science Documents
File PDF document Interactions and Linkages among Ecosystems during Landscape Evolution
We synthesize our findings of studies in Glacier Bay National Park and Preserve, southeastern Alaska, to elucidate interactions and linkages among terrestrial, lake, stream, and marine intertidal ecosystems as the landscape evolves following ice recession. Development in each ecosystem is initially dominated by physical processes. Over time, biotic control becomes increasingly important, although the extent of biotic control varies among ecosystems. The changes occurring in the four ecosystems are linked by landscape processes, with the nature and strength of these linkages changing through time. Change in one ecosystem has a major influence on the nature and direction of change in other ecosystems. Soil development and woody biomass accumulation on land provide an inertia that is unmatched in stream, lake, or intertidal systems. It is important that researchers and managers understand this science of change, at different spatial and temporal scales, in order to predict future states of ecological systems. The dynamics of change that we document at Glacier Bay during primary succession have important implications for managing the system with respect to anthropogenic change. Keywords: landscape, development, ecosystems, succession, linkages
Located in Resources / Climate Science Documents