Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Wilderness and biodiversity conservation
Human pressure threatens many species and ecosystems, so con- servation efforts necessarily prioritize saving them. However, conservation should clearly be proactive wherever possible. In this article, we assess the biodiversity conservation value, and specif- ically the irreplaceability in terms of species endemism, of those of the planet’s ecosystems that remain intact. We find that 24 wil- derness areas, all >1 million hectares, are >70% intact and have human densities of less than or equal to five people per km2. This wilderness covers 44% of all land but is inhabited by only 3% of people. Given this sparse population, wilderness conservation is cost-effective, especially if ecosystem service value is incorporated. Soberingly, however, most wilderness is not speciose: only 18% of plants and 10% of terrestrial vertebrates are endemic to individual wildernesses, the majority restricted to Amazonia, Congo, New Guinea, the Miombo–Mopane woodlands, and the North American deserts. Global conservation strategy must target these five wil- dernesses while continuing to prioritize threatened biodiversity hotspots.
Located in Resources / Climate Science Documents
Wildfire
Located in Resources / Research / Projects
File PDF document Wildfire and forest harvest disturbances in the boreal forest leave different long-lasting spatial signatures
Natural disturbances leave long-term legacies that vary among landscapes and ecosystem types, and which become integral parts of successional pro- cesses at a given location. As humans change land use, not only are immediate post-disturbance patterns altered, but the processes of recovery themselves are likely altered by the disturbance. We assessed whether short-term effects on soil and vegetation that distinguish wildfire from forest harvest persist over 60 years after disturbance in boreal black spruce forests, or post-disturbance processes of recovery promote convergence of the two disturbance types.
Located in Resources / Climate Science Documents
File PDF document Wildfire and fuel treatment effects on forest carbon dynamics in the western United States
Sequestration of carbon (C) in forests has the potential to mitigate the effects of climate change by offsetting future emissions of greenhouse gases. However, in dry temperate forests, wildfire is a natural disturbance agent with the potential to release large fluxes of C into the atmosphere. Climate-driven increases in wildfire extent and severity are expected to increase the risks of reversal to C stores and affect the potential of dry forests to sequester C. In the western United States, fuel treatments that successfully reduce surface fuels in dry forests can mitigate the spread and severity of wildfire, while reducing both tree mortality and emissions from wildfire. However, heterogeneous burn environments, site-specific variability in post-fire ecosystem response, and uncertainty in future fire frequency and extent complicate assessments of long-term (decades to centuries) C dynamics across large landscapes. Results of studies on the effects of fuel treatments and wildfires on long-term C retention across large landscapes are limited and equivocal. Stand-scale studies, empirical and modeled, describe a wide range of total treatment costs (12–116 Mg C ha1 ) and reductions in wildfire emissions between treated and untreated stands (1–40 Mg C ha1 ). Conclusions suggest the direction (source, sink) and magnitude of net C effects from fuel treatments are similarly variable (33 Mg C ha1 to +3 Mg C ha1 ). Studies at large spatial and temporal scales suggest that there is a low likelihood of high-severity wildfire events interacting with treated forests, negating any expected C benefit from fuels reduction. The frequency, extent, and severity of wildfire are expected to increase as a result of changing climate, and additional information on C response to management and disturbance scenarios is needed improve the accuracy and usefulness of assessments of fuel treatment and wildfire effects on C dynamics. 20
Located in Resources / Climate Science Documents
Wildfire Collection
The Southeast leads the nation in the number of annual wildland fire events but also has more prescribed (planned) burns than any other region. While fire has long played a critical role in the landscapes across the Southeast, it is becoming increasingly difficult for agencies, organizations, and landowners to plan for and respond effectively to wildfire, while protecting vulnerable communities and providing for firefighter safety.
Wildfire Multimedia
Located in Wildfire
Wildfire Multimedia
Located in Wildfire
Wildfire Podcasts
Located in Wildfire / Wildfire Multimedia
Wildfire Podcasts
Located in Wildfire / Wildfire Multimedia
Wildfire Recovery
Recovering from a wildfire can be financially and emotionally complex, particularly if the wildfire was catastrophic and caused significant damage. Research has also shown that already vulnerable groups, such as racial and ethnic minorities, are significantly more vulnerable to the effects of natural disasters, including wildfire, leaving them more in need of assistance.
Located in Wildfire