Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document THE SPATIAL AND TEMPORAL VARIABILITY OF RAIN-ON-SNOW
Snow melt during rainfall causes large-scale flooding and avalanching. These rain-on- snow events are most well-documented in the coastal mountain ranges of western North America. To determine what role they play in interior mountains, we analyzed flood frequencies in the Columbia River basin and modeled rain-on-snow potential from daily temperature and precipitation data. Applying the model with geographically distributed weather data allowed maps of rain-on-snow potential at 2km spatial resolution to be generated for characteristic climate years of 1982 (cold and wet), 1988 (warm and dry), and 1989 (average). It was found that rain-on-snow events are more likely during cool, wet years (such as 1982). A greater number of events and more widespread distribution of events occur during this type of climate. The cool temperatures allow low-elevation snow to accumulate and frequent storms bring the possibility of mid-winter rain. Warm, dry years (1988) are less likely to experience rain-on-snow events. There is little low-elevation snow at these times and only occasional precipitation. During all years, areas most susceptible to rain-on-snow are those where topography allows incursion of relatively warm, moist marine air that flows from the Pacific Ocean into the Columbia Plateau and up the Snake River Valley. These areas include the Cascade mountains; northern Idaho, northeastern Washington, and northwestern Montana where valleys open into the Columbia plateau; the Blue Mountains of northeastern Oregon; and western Wyoming and central Idaho adjacent to the Snake River. KEYWORDS: snow, avalanches, rain-on-snow, floods
Located in Resources / Climate Science Documents
File PDF document RAIN-ON-SNOW EVENTS IN THE WESTERN UNITED STATES
Severity of rain on snow depends on a number of factors, and an overall decrease in these events appears to be driven, in part, by changes in El Niño–Southern Oscillation.
Located in Resources / Climate Science Documents
File PDF document Influence of Timber Harvest on Rain-On-Snow Runoff: A Mechanism for Cumulative Watershed Effects
Rain-on-snow dominates many geomorphological processes in the Pacific Northwest. Wind-aided transfers of heat to snow during rain-on-snow comprise the largest source of heat for snowmelt during rainfall.␣ Recent field research in western. Oregon and western Washington has shown that timber harvest and thinning can increase both snow accumulation and the wind-aided transfers of heat, resulting in higher rates of water delivery to soil during rain-on-snow conditions.␣ Increased rates of water delivery to soil can lead to higher streamflows and to landslides on marginally stable slopes. Because of the magnitude of increase in water delivery to soils during common rain-on-snow conditions and a hydrologic recovery period that may require 40 years, rain-on-snow runoff is an important mechanism␣ whereby forest management activities might cumulatively affect water resources.
Located in Resources / Climate Science Documents
File PDF document Rain on Snow: Little Understood Killer in the North
n October 2003, a severe rain-on-snow (ROS) event killed approximately 20,000 musk-oxen (Figure 1) on Banks Island, which is the westernmost of the Canadian Arctic islands (approximately 380 kilome- ters by 290 kilometers in size). The event reduced the isolated herd by 25% and sig- nificantly affected the people dependent on the herd’s well-being. Because of the sparsity of weather stations in the Arctic and the lack of routinely deployed weather equipment that was capable of accurately sensing the ROS event, its detection largely was based on reports from hunters who were in the affected areas at the time.Such events can significantly alter a fro- zen ecosystem—with changes that often persist for the remainder of a winter—by creating ice layers at the surface of, within, or below the snowpack. The water and ice layers are known to facilitate the growth of toxic fungi, significantly warm the soil surface under thick snowpack, and deter large grazing mammals.
Located in Resources / Climate Science Documents
File PDF document Simulating snowmelt process during rain-on-snow over a semi-arid mountain basin
In the Pacific Northwest of North America, significant flooding can occur during mid-winter rain-on-snow events. Warm, wet Pacific storms caused significant floods in the Pacific Northwest in February 1996, January 1997 and January 1998. Rapid melting of the mountain snow cover substantially augmented discharge during these flood events. An energy-balance snowmelt model is used to simulate snowmelt processes during the January 1997 event over a small headwater basin within the Reynolds Creek Experimental Watershed located in the Owyhee Mountains of southwestern Idaho, U.S.A. This sub-basin is 34% forested 􏰑12% fir, 22% aspen and 66% mixed sagebrush 􏰑primarily mountain big sage- brush)). Data from paired open and forested experimental sites were used to drive the model. Model-forcing data were corrected for topographic and vegetation canopy effects. The event was preceded by cold, stormy conditions that developed a significant snow cover over the sub- basin. The snow cover at sites protected by forest cover was slightly reduced, while at open sites significant snowmelt occurred. The warm, moist, windy conditions during the flooding event produced substantially higher melt rates in exposed areas, where sensible- and latent- heat exchanges contributed 60^90% of the energy for snowmelt. Simulated snow-cover devel- opment and ablation during the model run closely matched measured conditions at the two experimental sites. This experiment shows the sensitivity of snowmelt processes to both climate and land cover, and illustrates how the forest canopy is coupled to the hydrologic cycle in mountainous areas.
Located in Resources / Climate Science Documents
File PDF document Protecting Wildlife Migration Corridors and Crucial Wildlife Habitat in the West
BACKGROUND 1. Large intact and functioning ecosystems, healthy fish and wildlife populations, and abundant public access to natural landscapes are a significant contributing factor to the West's economic and in-migration boom as well as quality of life. Critical wildlife migration corridors and crucial wildlife habitats are necessary to maintain flourishing wildlife populations. . 2. The Western States are particularly and uniquely affected by activity occurring in wildlife migration corridors and crucial wildlife habitats. Western States must also contend with an inter-connected mixture of private, state and federal lands. Migration corridors cross all political boundaries and States need to protect migration corridors on federal land through various state planning documents. 3. Natural resource development, urban development, and maintenance of the existing infrastructures of the West impact wildlife species, their habitats and migration corridors. Western States are increasingly expending limited state funds to participate in federal public land resource management planning as a result of the growing national focus on energy production and independence. States continue to expend scarce funds to protect or mitigate impacts to wildlife resources by energy development. 4. States possess broad trustee, police powers and primacy over fish and wildlife within their borders. With the exception of marine mammals, states retain concurrent jurisdiction even where Congress has directed specific federal authority of fish and wildlife speci
Located in Resources / Climate Science Documents
File PDF document Seasonal and diel patterns in the migrations of fishes between a river and a floodplain tributary
The population behaviours associated with the migrations of fishes in lowland river ecosystems are amongst the most poorly-understood dispersal mechanisms of temperate freshwater organisms. This study evaluated the influence of four environmental variables (light levels, river discharge, water temperature and water velocity) on the timing, intensity and direction of fish movements between the River Avon (Hampshire, England) and a small floodplain tributary, Ibsley Brook, over a 12-month period. Using canonical correspondence analysis (CCA) to identify patterns of movement (by groups of species) and the relative strengths of explanatory variables in the data, the probability of fishes migrating between the river and tributary was determined using Bayesian modelling. The intensity and direction of fish movements between the river and tributary varied temporally, both on a diel and seasonal basis, and there were species- and age-specific patterns in behaviour. Diel movements appeared to be triggered by changes in light intensity and brook water velocity, whereas seasonal movements were mostly driven by changes in river discharge and water temperature, particularly those associated with floods. This study emphasises the importance of connectivity in river systems, as fishes migrated in all conditions, but especially during rapidly- rising discharge. ecosystem function; habitat connectivity; habitat fragmentation; habitat use; river discharge; water velocity
Located in Resources / Climate Science Documents
File PDF document Do small tributaries function as refuges from floods? A test in a salmonid-dominated mountainous river
Excerpts from the text: On 8–10 August 2003, a powerful typhoon hit Hokkaido Island, Japan, accompanied with heavy rain, which allowed us to investigate the potential role of tributaries as refuges from flooding. We had just completed annual population census in four small tributaries of a river system 1–2 days before the typhoon.... Overall, our results did not support the hypothesis that many large fishes immigrate to small tributaries during floods. ... Despite the lack of evidence of mass movement, our result suggested a few immigrants from the main stem (i.e., juvenile white-spotted charr, sculpin and a few relatively large Dolly Varden). Because more than 100 small tributaries exist in the Shiisorapuchi River (Koizumi 2011), only a few individuals escaping to each tributary should accumulate to a great number enough to re-colonise main stem habitats even if fishes in the main stem were extirpated. Multiple refuges at different spatial scales should increase resistance and ⁄ or resilience of fish populations (Sedell et al. 1990; Pearsons et al. 1992). Thus, the roles of tributaries as refuges would deserve further attention
Located in Resources / Climate Science Documents
File PDF document Characteristics, distribution and geomorphic role of large woody debris in a mountain stream of the Chilean Andes
The paper presents an analysis of amounts, characteristics and morphological impact of large woody debris (LWD) in the Tres Arroyos stream, draining an old-growth forested basin (9·1 km2) of the Chilean Southern Andes. Large woody debris has been surveyed along a 1·5 km long channel section with an average slope of 0·07 and a general step–pool/cascade morphology. Specific wood storage is very high (656 –710 m3 ha−1), comparable to that recorded in old-growth forested basins in the Pacific Northwest. Half of the LWD elements were located on the active floodplain, and around two-thirds of LWD elements were found in accumula- tions. Different types of log jam were observed, some heavily altering channel morphology (log-steps and valley jams), while others just line the channel edges (bankfull bench jams). Log-steps represent approximately 22% of all steps, whereas the elevation loss due to LWD (log-steps and valley jams) results in 27% loss of the total stream potential energy. About 1600 m3 of sediment is stored in the main channel behind LWD structures, corresponding to approximately 150% of the annual sediment yield. Keywords: large woody debris; channel morphology; valley jams; log-steps; Andes; stream sediment: sediment traps
Located in Resources / Climate Science Documents
File PDF document Distribution and characterization of in‐channel large wood in relation to geomorphic patterns on a low‐gradient river
A 177 river km georeferenced aerial survey of in‐channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low‐gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine‐grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LW frequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low‐gradient, dam‐regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests
Located in Resources / Climate Science Documents