Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
Quarterly Reports Folder
Quarterly Reports for Review and Archive for the Climate Change Vulnerability Project.
Located in Research / Species and Habitat Vulnerability Assessments of Appalachian Species and Habitats / Workspace
Quarterly Reports Folder
Quarterly Reports for Review and Archive for the Energy Forecasts Project.
Located in Research / Assessing Future Energy Development Across the Appalachians / Workspace
File Questions and Answers-SE FireMap Phase II: Developing the Decision Support System
Question and Answer transcript of the Q&A SE FireMap Phase II: Developing the Decision Support System webinar.
Located in SE FireMap 2.0 / Webinars / SE FireMap Phase II: Developing the Decision Support System Webinar
File PDF document Rach et al 2006.pdf
Located in Resources / TRB Library / PEK-RIC
File PDF document Radio Pollution Gradient.pdf
Located in Resources / TRB Library / PEK-RIC
File PDF document Raesly 1993.pdf
Located in Resources / TRB Library / PEK-RIC
File PDF document Rain on Snow: Little Understood Killer in the North
n October 2003, a severe rain-on-snow (ROS) event killed approximately 20,000 musk-oxen (Figure 1) on Banks Island, which is the westernmost of the Canadian Arctic islands (approximately 380 kilome- ters by 290 kilometers in size). The event reduced the isolated herd by 25% and sig- nificantly affected the people dependent on the herd’s well-being. Because of the sparsity of weather stations in the Arctic and the lack of routinely deployed weather equipment that was capable of accurately sensing the ROS event, its detection largely was based on reports from hunters who were in the affected areas at the time.Such events can significantly alter a fro- zen ecosystem—with changes that often persist for the remainder of a winter—by creating ice layers at the surface of, within, or below the snowpack. The water and ice layers are known to facilitate the growth of toxic fungi, significantly warm the soil surface under thick snowpack, and deter large grazing mammals.
Located in Resources / Climate Science Documents
File PDF document RAIN-ON-SNOW EVENTS IN THE WESTERN UNITED STATES
Severity of rain on snow depends on a number of factors, and an overall decrease in these events appears to be driven, in part, by changes in El Niño–Southern Oscillation.
Located in Resources / Climate Science Documents
File PDF document rainfall preceded by air passage over forests
Vegetation affects precipitation patterns by mediating moisture, energy and trace-gas fluxes between the surface and atmosphere1. When forests are replaced by pasture or crops, evapotranspiration of moisture from soil and vegetation is often diminished, leading to reduced atmospheric humidity and potentially suppressing precipitation2,3. Climate models predict that large-scale tropical deforestation causes reduced regional precipitation4–10, although the magnitude of the effect is model9,11 and resolution8 dependent. In contrast, observational studies have linked deforestation to increased precipitation locally12–14 but have been unable to explore the impact of large-scale deforestation. Here we use satellite remote-sensing data of tropical precipitation and vegetation, combined with simulated atmospheric transport patterns, to assess the pan-tropical effect of forests on tropical rainfall. We find that for more than 60 per cent of the tropical land surface (latitudes 30 degrees south to 30 degrees north), air that has passed over extens- ive vegetation in the preceding few days produces at least twice as much rain as air that has passed over little vegetation. We demonstrate that this empirical correlation is consistent with evapotranspiration maintaining atmospheric moisture in air that passes over extensive vegetation. We combine these empirical rela- tionships with current trends of Amazonian deforestation to estimate reductions of 12 and 21 per cent in wet-season and dry- season precipitation respectively across the Amazon basin by 2050, due to less-efficient moisture recycling. Our observation-based results complement similar estimates from climate models4–10, in which the physical mechanisms and feedbacks at work could be explored in more detail.
Located in Resources / Climate Science Documents
File PDF document Raithel Hartenstine 2006.pdf
Located in Resources / TRB Library / PEK-RIC