Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Seasons and Life Cycles
A conceptual framework. This table is a guide to determining how individual species are responding to an extended growing season by observing the duration of peak season. The life history of a species—from the onset of greening through the end of senescence—is illustrated by the length of the solid lines. Each case represents a shift in the timing (columns) and duration (rows) of one or more species in a hypothetical three-species community that includes an early-, mid-, and late-season species. The growing season begins when the first species greens and ends when the last species senesces. The peak season (gray shaded area) occurs when all species have started and none have completed their life history. Reproductive life history events likely begin before the peak season and are completed before its end. The final row and column list changes that can be observed through frequent observations of surface greenness.
Located in Resources / Climate Science Documents
File PDF document Risks of Climate Engineering
Observations indicate that attempts to limit climate warming by reducing incoming shortwave radiation risk major precipitation changes.
Located in Resources / Climate Science Documents
File PDF document Phenology Feedbacks on Climate Change
A longer growing season as a result of climate change will in turn affect climate through biogeochemical and biophysical effects. SCIENCE VOL 324
Located in Resources / Climate Science Documents
File PDF document The Genetic Architecture of Maize Flowering Time
Flowering time is a complex trait that controls adaptation of plants to their local environment in the outcrossing species Zea mays (maize). We dissected variation for flowering time with a set of 5000 recombinant inbred lines (maize Nested Association Mapping population, NAM). Nearly a million plants were assayed in eight environments but showed no evidence for any single largeeffect quantitative trait loci (QTLs). Instead, we identified evidence for numerous small-effect QTLs shared among families; however, allelic effects differ across founder lines. We identified no individual QTLs at which allelic effects are determined by geographic origin or large effects for epistasis or environmental interactions. Thus, a simple additive model accurately predicts flowering time for maize, in contrast to the genetic architecture observed in the selfing plant species rice and Arabidopsis.
Located in Resources / Climate Science Documents
File PDF document Peatland Response to Global Change
Peatlands can buffer the impact of external perturbations, but can also rapidly shift to a new ecosystem type, with large gains or losses of stored carbon. VOL 326 SCIENCE
Located in Resources / Climate Science Documents
File PDF document Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA
We provide a century-scale view of small-mammal responses to global warming, without confounding effects of land-use change, by repeating Grinnell’s early–20th century survey across a 3000-meter-elevation gradient that spans Yosemite National Park, California, USA. Using occupancy modeling to control for variation in detectability, we show substantial (~500 meters on average) upward changes in elevational limits for half of 28 species monitored, consistent with the observed ~3°C increase in minimum temperatures. Formerly low-elevation species expanded their ranges and high-elevation species contracted theirs, leading to changed community composition at mid- and high elevations. Elevational replacement among congeners changed because species’ responses were idiosyncratic. Though some high-elevation species are threatened, protection of elevation gradients allows other species to respond via migration
Located in Resources / Climate Science Documents
File PDF document Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics
Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.
Located in Resources / Climate Science Documents
File PDF document Impacts Research Seen As Next Climate Frontier
Scientists hope the next U.S. president will devote more of the billion-dollar climate change research program to impacts SCIENCE VOL 322
Located in Resources / Climate Science Documents
File PDF document From Death Comes Life: Recovery and Revolution in the Wake of Epidemic Outbreaks of Mountain Pine Beetle
Excerpt : “Part of the initial increase in nutrients and moisture under dead and dying trees is due to reduced uptake,” Rhoades says. “But the sick and dead trees are also losing needles that fall to the ground and help retain soil moisture. And, as trees decay, they release nutrients back into the system.”
Located in Resources / Climate Science Documents
File ECMAScript program More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century
A global coupled climate model shows that there is a distinct geographic pattern to future changes in heat waves. Model results for areas of Europe and North America, associated with the severe heat waves in Chicago in 1995 and Paris in 2003, show that future heat waves in these areas will become more intense, more frequent, and longer lasting in the second half of the 21st century. Observations and the model show that present-day heat waves over Europe and North America coincide with a specific atmospheric circulation pattern that is intensified by ongoing increases in greenhouse gases, indicating that it will produce more severe heat waves in those regions in the future.
Located in Resources / Climate Science Documents