Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Old Trees: Extraction, Conservation Can Coexist
BECAUSE LARGE OLD TREES ARE ESSENTIAL FOR FOREST ECOSYSTEM INTEGRITY AND BIODIVERsity, timber extraction in managed forests should preferentially be concentrated where large old trees are least likely to develop (“Global decline in large old trees,” D. B. Lindenmayer et al., Perspectives, 7 December 2012, p. 1305). However, timber extraction and the conservation of large old trees are not necessarily mutually exclusive. Current forest policy and management practices in Flanders, Belgium, aim to convert even-aged stands (areas in which trees are all the same age) to stands with trees of varying ages in an effort to increase forest ecosystem stability and resilience and to allow trees to grow old. As part of their ecologically sustainable forest management, public forest managers have adopted a large-tree retention approach [see also (1, 2)]. Tree islands within stands managed for production of high-quality timber are reserved for conservation, and trees within these islands will never be extracted. Large old trees of commercially valuable species that have grown beyond the commercially optimal dimensions will not be logged either. And no tree beyond a threshold diameter [currently set at dbh (diameter at breast height) of more than 102 cm] will ever be logged. The strip-shelterwood system (in which trees are cut in linear strips and surrounding trees are given time to grow old) and the coppice-with-standards system (in which some trees are left to grow while others around them are cut) are two examples of forest management that allows the combination of sustainable forest exploitation and conservation of large old trees
Located in Resources / Climate Science Documents
File PDF document Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security
Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide–reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.
Located in Resources / Climate Science Documents
File PDF document Financial Costs of Meeting Global Biodiversity Conservation Targets: Current Spending and Unmet Needs
World governments have committed to halting human-induced extinctions and safeguarding important sites for biodiversity by 2020, but the financial costs of meeting these targets are largely unknown. We estimate the cost of reducing the extinction risk of all globally threatened bird species (by ≥1 International Union for Conservation of Nature Red List category) to be U.S. $0.875 to $1.23 billion annually over the next decade, of which 12% is currently funded. Incorporating threatened nonavian species increases this total to U.S. $3.41 to $4.76 billion annually. We estimate that protecting and effectively managing all terrestrial sites of global avian conservation significance (11,731 Important Bird Areas) would cost U.S. $65.1 billion annually. Adding sites for other taxa increases this to U.S. $76.1 billion annually. Meeting these targets will require conservation funding to increase by at least an order of magnitude.
Located in Resources / Climate Science Documents
File PDF document Plant Species Richness and Ecosystem Multifunctionality in Global Drylands
Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.
Located in Resources / Climate Science Documents
File PDF document The Greenhouse Is Making the Water-Poor Even Poorer
How bad will global warming get? The question has long been cast in terms of how hot the world will get. But perhaps more important to the planet’s inhabitants will be how much rising greenhouse gases crank up the water cycle. Theory and models predict that a strengthening greenhouse will increase precipitation where it is already relatively high—tropical rain forests, for example— and decrease it where it is already low, as in the subtropics. SCIENCE VOL 336 27 APRIL 2012
Located in Resources / Climate Science Documents
File PDF document Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000
Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 T 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world. SCIENCE VOL 336
Located in Resources / Climate Science Documents
File PDF document Generic Indicators for Loss of Resilience Before a Tipping Point Leading to Population Collapse
Theory predicts that the approach of catastrophic thresholds in natural systems (e.g., ecosystems, the climate) may result in an increasingly slow recovery from small perturbations, a phenomenon called critical slowing down. We used replicate laboratory populations of the budding yeast Saccharomyces cerevisiae for direct observation of critical slowing down before population collapse. We mapped the bifurcation diagram experimentally and found that the populations became more vulnerable to disturbance closer to the tipping point. Fluctuations of population density increased in size and duration near the tipping point, in agreement with the theory. Our results suggest that indicators of critical slowing down can provide advance warning of catastrophic thresholds and loss of resilience in a variety of dynamical systems. SCIENCE VOL 336 1
Located in Resources / Climate Science Documents
File PDF document Impacts of Biodiversity Loss
How much diversity is needed to maintain the productivity of ecosystems? VOL 336 SCIENCE
Located in Resources / Climate Science Documents
File PDF document Navigating the Anthropocene: Improving Earth System Governance
The United Nations conference in Rio de Janeiro in June is an important opportunity to improve the institutional framework for sustainable development. VOL 335 SCIENCE
Located in Resources / Climate Science Documents
File PDF document The Global Extent and Determinants of Savanna and Forest as Alternative Biome States
Theoretically, fire–tree cover feedbacks can maintain savanna and forest as alternative stable states. However, the global extent of fire-driven discontinuities in tree cover is unknown, especially accounting for seasonality and soils. We use tree cover, climate, fire, and soils data sets to show that tree cover is globally discontinuous. Climate influences tree cover globally but, at intermediate rainfall (1000 to 2500 millimeters) with mild seasonality (less than 7 months), tree cover is bimodal, and only fire differentiates between savanna and forest. These may be alternative states over large areas, including parts of Amazonia and the Congo. Changes in biome distributions, whether at the cost of savanna (due to fragmentation) or forest (due to climate), will be neither smooth nor easily reversible.
Located in Resources / Climate Science Documents