Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Linked in: Connectiong Riparian areas to support Forest Biodiversity
Many forest-dwelling species rely on both terrestrial and aquatic habitat for their survival. These species, including rare and little-understood amphibians and arthropods, live in and around headwater streams and disperse overland to neighboring headwater streams. Forest management policies that rely on riparian buffer strips and structurebased management—practices meant to preserve habitat—address only some of these habitat needs. They generally do not consider the overland connectivity necessary for these species to successfully move across a landscape to maintain genetically diverse populations. Management in headwater areas also can affect downstream salmon habitat. Landslides and debris flows initiated in these areas can severely degrade habitat by dumping too much sediment and not enough large wood into the stream. Carefully managing sensitive headwater areas can aid not only amphibians and arthropods, but also threatened salmon populations and other forest organisms. Pacific Northwest Research Station scientists are exploring scenarios for protecting headwaters by extending riparian buffers and connecting them over ridgelines to neighboring drainages. A range of management practices designed to achieve multiple objectives may be appropriate in these protected areas to facilitate cost-effective, ecologically integrated management plans. Headwater links could piggyback on lands that are already protected and could consider such factors as sensitivity to debris flows and landslides, land ownerships and objectives, and climate change.
Located in Resources / Climate Science Documents
File PDF document From Ocean to Stratosphere
Rising tropical sea surface temperatures alter atmospheric dynamics at heights of 16 kilometers or more. SCIENCE VOL 322 3 OCTOBER 2008
Located in Resources / Climate Science Documents
File PDF document Seeds of Change for Restoration Ecology
FORESTS PROVIDE A WIDE VARIETY OF ECOSYSTEM SERVICES, INCLUDING PROVISIONS SUCH AS food and fuel and services that affect climate and water quality (1). In light of the increasing global population pressure, we must not only conserve, but also restore forests to meet the increasing demands for ecosystem services and goods that they provide (2). Ecological restoration has recently adopted insights from the biodiversity-ecosystem function (BEF) perspective (3). This emphasis on functional rather than taxonomic diversity (3, 4), combined with increasing acceptance of perennial, global-scale effects on the environment (5, 6) and the associated species gains and losses (“Terrestrial ecosystem responses to species gains and losses,” D. A. Wardle et al., Review, 10 June, p. 1273), may be the beginning of a paradigm shift in forest conservation and restoration ecology. As a result, we may see increased tolerance toward and the use of nonnative tree species in forests worldwide 8 JULY 2011 VOL 333 SCIENCE
Located in Resources / Climate Science Documents
File PDF document Rapid Range Shifts of Species Associated with High Levels of Climate Warming
The distributions of many terrestrial organisms are currently shifting in latitude or elevation in responseto changing climate. Using a meta-analysis, we estimated that the distributions of species haverecently shifted to higher elevations at a median rate of 11.0 meters per decade, and to higher latitudes at a median rate of 16.9 kilometers per decade. These rates are approximately two and three times faster than previously reported. The distances moved by species are greatest in studies showing thehighest levels of warming, with average latitudinal shifts being generally sufficient to track temperature changes. However, individual species vary greatly in their rates of change, suggesting that the range shift of each species depends on multiple internal species traits and external drivers of change. Rapid average shifts derive from a wide diversity of responses by individual species.
Located in Resources / Climate Science Documents
File PDF document Rescuing Wolves from Politics: Wildlife as a Public Trust Resource
Long-term conservation of gray wolves is possible if states recognize a legal obligation to conserve species as a public trust resource
Located in Resources / Climate Science Documents
File PDF document Human Evolution Out of Africa: The Role of Refugia and Climate Change
Although an African origin of the modern human species is generally accepted, the evolutionary processes involved in the speciation, geographical spread, and eventual extinction of archaic humans outside of Africa are much debated. An additional complexity has been the recent evidence of limited interbreeding between modern humans and the Neandertals and Denisovans. Modern human migrations and interactions began during the buildup to the Last Glacial Maximum, starting about 100,000 years ago. By examining the history of other organisms through glacial cycles, valuable models for evolutionary biogeography can be formulated. According to one such model, the adoption of a new refugium by a subgroup of a species may lead to important evolutionary changes.
Located in Resources / Climate Science Documents
File PDF document The Greening of Synfuels
An old, dirty technology to make transportation fuels from coal could fight global warming, say proponents. The trick is using more biomass and burying the carbon dioxide that’s generated 18 APRIL 2008 VOL 320 SCIENCE
Located in Resources / Climate Science Documents
File ECMAScript program How Does Climate Change Affect Biodiversity?
The most recent and complex bioclimate models excel at describing species’ current distributions. Yet, it is unclear which models will best predict how climate change will affect their future distributions. 8 SEPTEMBER 2006 VOL 313 SCIENCE
Located in Resources / Climate Science Documents
File PDF document Not All About Consumption
Resource exploitation can lead to increased ecological impacts even when overall consumption levels stay the same 15 March 2013 VOL 339 SCIENCE
Located in Resources / Climate Science Documents
File PDF document Freshwater Methane Emissions Offset the Continental Carbon Sink
Acornerstone of our understanding of the contemporary global carbon cycle is that the terrestrial land surface is an important greenhouse gas (GHG) sink (1, 2). The global land sink is estimated to be 2.6 T 1.7 Pg of C year−1 (variability T range, excluding C emissions because of deforestation) (1). Lakes, impoundments, and rivers are parts of the terrestrial landscape, but they have not yet been included in the terrestrial GHG balance (3, 4). Available data suggest, however, that freshwaters can be substantial sources of CO2 (3, 5) and CH4 (6). Over time, soil carbon reaches freshwaters by lateral hydrological transport, where it can meet several fates, including burial in sediments, further transport to the sea, or evasion to the atmosphere as CO2 or CH4 (7). CH4 emissions may be small in terms of carbon, but CH4 is a more potent GHG than CO2 over century time scales. This study indicates that global CH4 emissions expressed as CO2 equivalents correspond to at least 25% of the estimated terrestrial GHG sink.
Located in Resources / Climate Science Documents