Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document The Historical Dynamics of Socio-ecological Traps
Environmental degradation is a typical unintended outcome of collective human behavior. Hardin’s metaphor of the ‘‘tragedy of the commons’’ has become a conceived wisdom that captures the social dynamics leading to environmental degradation. Recently, ‘‘traps’’ has gained currency as an alternative concept to explain the rigidity of social and ecological processes that produce environmental degradation and livelihood impoverishment. The trap metaphor is, however, a great deal more complex compared to Hardin’s insight. This paper takes stock of studies using the trap metaphor. It argues that the concept includes time and history in the analysis, but only as background conditions and not as a factor of causality. From a historical–sociological perspective this is remarkable since social–ecological traps are clearly path-dependent processes, which are causally produced through a conjunction of events. To prove this point the paper conceptualizes social–ecological traps as a process instead of a condition, and systematically compares history and timing in one classic and three recent studies of social– ecological traps. Based on this comparison it concludes that conjunction of social and environmental events contributes profoundly to the production of trap processes. The paper further discusses the implications of this conclusion for policy intervention and outlines how future research might generalize insights from historical–sociological studies of traps.
Located in Resources / Climate Science Documents
File PDF document The influence of conversion of forest types on carbon sequestration and other ecosystem services in the South Central United States
This paper develops a forestland management model for the three states in the South Central United States (Arkansas, Louisiana, and Mississippi). Forest type and land-use shares are estimated to be a function of economic and physical variables. The results suggest that while historically pine plantations in this region have been established largely on old agricultural land, in the future pine plantations are likely to occur on converted hardwood-forest lands. This shift in the supply of land for plantations could have large effects on above-ground carbon storage and other ecosystem services. Subsidies of approximately $12–27 per ha per year would maintain the area of hardwood forests and reduce carbon emissions from the above-ground and product pool carbon stocks over the next 30 years. Across the several scenarios considered, results suggest that maintaining hardwoods could be an efficient carbon sequestration alternative.
Located in Resources / Climate Science Documents
File PDF document Understanding Soil Time
Efforts to maintain soils in a sustainable manner are complicated by interactions among soil components that respond to perturbation at vastly different rates. VOL 321 SCIENCE
Located in Resources / Climate Science Documents
File PDF document An Uncertain Future for Soil Carbon
Predictions of how rapidly the large amounts of carbon stored as soil organic matter will respond to warming are highly uncertain (1). Organic matter plays a key role in determining the physical and chemical properties of soils and is a major reservoir for plant nutrients. Understanding how fast organic matter in soils can be built up and lost is thus critical not just for its net effect on the atmospheric CO2 concentration but for sustaining other soil functions, such as soil fertility, on which societies and ecosystems rely. Recent analytic advances are rapidly improving our understanding of the complex and interacting factors that control the age and form of organic matter in soils, but the processes that destabilize organic matter in response to disturbances (such as warming or land use change) are poorly understood
Located in Resources / Climate Science Documents
File PDF document Impact of terrestrial biosphere carbon exchanges on the anomalous CO2 increase in 2002–2003
Understanding the carbon dynamics of the terrestrial biosphere during climate fluctuations is a prerequisite for any reliable modeling of the climate-carbon cycle feedback. We drive a terrestrial vegetation model with observed climate data to show that most of the fluctuations in atmospheric CO2 are consistent with the modeled shift in the balance between carbon uptake by terrestrial plants and carbon loss through soil and plant respiration. Simulated anomalies of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) during the last two El Nin˜o events also agree well with satellite observations. Our model results suggest that changes in net primary productivity (NPP) are mainly responsible for the observed anomalies in the atmospheric CO2 growth rate. Changes in heterotrophic respiration (Rh) mostly happen in the same direction, but with smaller amplitude. We attribute the unusual acceleration of the atmospheric CO2 growth rate during 2002–2003 to a coincidence of moderate El Nin˜o conditions in the tropics with a strong NPP decrease at northern mid latitudes, only partially compensated by decreased
Located in Resources / Climate Science Documents
File PDF document Emerging Techniques for Soil Carbon measurements
Soil carbon sequestration is one approach to mitigate greenhouse gases. However, to reliably assess the quantities sequestered as well as the chemical structure of the soil carbon, new methods and equipment are needed. These methods and equipment must allow large scale measurements and the construction of dynamic maps. This paper presents results from some emerging techniques to measure carbon quantity and stability. Each methodology has specific capabilities and their combined use along with other analytical tools will improve soil organic matter research. New opportunities arise with the development and application of portable equipment, based on spectroscopic methods, as laser-induced fluorescence, laser-induced breakdown spectroscopy and near infrared, for in situ carbon measurements in different ecosystems. These apparatus could provide faster and lower cost field analyses thus improving soil carbon contents and quality databases. Improved databases are essential to model carbon balance, thus reducing the uncertainties generated through the extrapolation of limited data.
Located in Resources / Climate Science Documents
File PDF document Protected Areas as Frontiers for Human Migration
Causes of human population growth near protected areas have been much debated. We conducted 821 interviews in 16 villages around Budongo Forest Reserve, Masindi district, Uganda, to explore the causes of human migration to protected areas and to identify differences in forest use between migrant and nonmigrant communities. We asked subjects for information about birthplace, migration, household assets, household activities, and forest use. Interview subjects were categorized as nonmigrants (born in one of the interview villages), socioeconomic migrants (chose to emigrate for economic or social reasons) from within Masindi district (i.e., local migrants) and from outside the Masindi district (i.e., regional migrants), or forced migrants (i.e., refugees or internally displaced individuals who emigrated as a result of conflict, human rights abuses, or natural disaster). Only 198 respondents were born in interview villages, indicating high rates of migration between 1998 and 2008. Migrants were drawn to Budongo Forest because they thought land was available (268 individuals) or had family in the area (161 individuals). A greater number of regional migrants settled in villages near Lake Albert than did forced and local migrants. Migration category was also associated with differences in sources of livelihood. Of forced migrants 40.5% earned wages through labor, whereas 25.5% of local and 14.5% of regional migrants engaged in wage labor. Migrant groups appeared to have different effects on the environment. Of respondents that hunted, 72.7% were regional migrants. Principal component analyses indicated households of regional migrants were more likely to be associated with deforestation. Our results revealed gaps in current models of human population growth around protected areas. By highlighting the importance of social networks and livelihood choices, our results contribute to a more nuanced understanding of causes of migration and of the environmental effects of different migrant groups. Conservation Biology, Volume 26, No. 3, 547–556
Located in Resources / Climate Science Documents
File PDF document Barking up the Wrong Tree? Forest Sustainability in the wake of Emerging Bioenergy Policies
The spotted owl controversy revealed that federal forest management policies alone could not guarantee functioning forest ecosystems. At the same time as the owl’s listing, agreements made at the 1992 Rio Earth Summit highlighted the mounting pressures on natural systems, thus unofficially marking the advent of sustainable forestry management (SFM).2 While threats to forest ecosystems from traditional logging practices certainly remain,3 developed and developing countries have shifted generally toward more sustainable forest management, at least on paper, including codifying various sustainability indicators in public laws.4 Nevertheless, dark policy clouds are gathering on the forest management horizon. Scientific consensus has grown in recent years around a new and arguably more onerous threat to all of the world’s ecosystems—climate change. Governments’ responses have focused on bioenergy policies aimed at curtailing anthropogenic greenhouse gas (GHG) emissions, and mandatesfor renewables in energy supplies now abound worldwide. [Vol. 37:000
Located in Resources / Climate Science Documents
File PDF document Rebuilding Soils on Mined Land for Native Forests in Appalachia
The eastern U.S. Appalachian region supports the world’s most extensive temperate forests, but surface mining for coal has caused forest loss. New reclamation methods are being employed with the intent of restoring native forest on Appalachian mined lands. Mine soil construction is essential to the reforestation process. Here, we review scientific literature concerning selection of mining materials for mine soil construction where forest ecosystem restoration is the reclamation goal. Successful establishment and productive growth of native Appalachian trees has been documented on mine soils with coarse fragment contents as great as 60% but with low soluble salt levels and slightly to moderately acidic pHs, properties characteristic of the region’s native soils. Native tree productivity on some Appalachian mined lands where weathered rock spoils were used to reconstruct soils was found comparable to productivity on native forest sites. Weathered rock spoils, however, are lower in bioavailable N and P than native Appalachian soils and they lack live seed banks which native soils contain. The body of scientific research suggests use of salvaged native soils for mine soil construction when forest ecosystem restoration is the reclamation goal, and that weathered rock spoils are generally superior to unweathered rock spoils when constructing mine soils for this purpose.
Located in Resources / Climate Science Documents
File PDF document Amazon Basin climate under global warming: the role of the sea surface temperature
The Hadley Centre coupled climate–carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in midtwenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both thetropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.58C warmer air temperature associated with a global mean SST warming.
Located in Resources / Climate Science Documents