Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Life history predicts risk of species decline in a stochastic world
Understanding what traits determine the extinction risk of species has been a long-standing challenge. Natural populations increasingly experience reductions in habitat and population size concurrent with increasing novel environmental variation owing to anthropogenic disturbance and climate change. Recent studies show that a species risk of decline towards extinction is often non-random across species with differ- ent life histories. We propose that species with life histories in which all stage-specific vital rates are more evenly important to population growth rate may be less likely to decline towards extinction under these pressures. To test our prediction, we modelled declines in population growth rates under simulated stochas- tic disturbance to the vital rates of 105 species taken from the literature. Populations with more equally important vital rates, determined using elasticity analysis, declined more slowly across a gradient of increas- ing simulated environmental variation. Furthermore, higher evenness of elasticity was significantly correlated with a reduced chance of listing as Threatened on the International Union for Conservation of Nature Red List. The relative importance of life-history traits of diverse species can help us infer how natural assemblages will be affected by novel anthropogenic and climatic disturbances. Keywords: International Union for Conservation of Nature Red List; extinction; life history; stage-based; elasticity; stochasticity
Located in Resources / Climate Science Documents
File PDF document Future collapse: how optimistic should we be?
1st paragraph: Prof. Kelly FRS is optimistic about the chances of avoiding a collapse, but sadly we find his arguments entirely unpersuasive. For example, have Malthus (or we) really been wrong about food security? Roughly 850 million people are seriously undernourished (lacking sufficient calories) today, and perhaps 2 billion are malnourished (lacking one or more essential nutrients) [1]. When Malthus lived, there were only about 1 billion people on the planet. We agree that there are many things that could be done to feed today’s population of 7.1 billion, or even perhaps over 9 billion in 2050. Many of them (e.g. limiting waste) have been discussed for 50 years with little sign of progress. We do not think any serious analyst doubts that, if it were equitably distributed, today’s food production could nourish everyone adequately. Equally, we know of no serious analyst who believes such distribution is likely in the future. The concern is that climate disruption combined with other problems with the agricultural system will make it impossible to feed an ever larger future population, even if equal distribution were achieved. That concern is reinforced by the recent observation that, even before the likely heavy impacts of climate disruption on agriculture appear, production is failing to keep pace with projected needs [2].
Located in Resources / Climate Science Documents
File PDF document Why a collapse of global civilization will be avoided: a comment on Ehrlich & Ehrlich
1st paragraph: Ehrlich FRS & Ehrlich [1] claim that over-population, over-consumption and the future climate mean that ‘preventing a global collapse of civilization is perhaps the foremost challenge confronting humanity’. What is missing from the well- referenced perspective of the potential downsides for the future of humanity is any balancing assessment of the progress being made on these three chal- lenges (and the many others they cite by way of detail) that suggests that the problems are being dealt with in a way that will not require a major disruption to the human condition or society. Earlier dire predictions have been made in the same mode by Malthus FRS [2] on food security, Jevons FRS [3] on coal exhaustion, King FRS & Murray [4] on peak oil, and by many others. They have all been overcome by the exercise of human ingenuity just as the doom was being prophesied with the deployment of steam engines to greatly improve agricultural efficiency, and the discoveries of oil and of fracking oil and gas, respectively, for the three examples given. It is incumbent on those who would continue to predict gloom to learn from history and make a comprehen- sive review of human progress before coming to their conclusions. The problems as perceived today by Ehrlich FRS and Ehrlich will be similarly seen off by work in progress by scientists and engineers. My comment is intended to summarize and reference the potential upsides being produced by today’s human ingenuity, and I leave the reader to weigh the balance for the future, taking into account the lessons of recent history.
Located in Resources / Climate Science Documents
File PDF document Anthropogenic environments exert variable selection on cranial capacity in mammals
It is thought that behaviourally flexible species will be able to cope with novel and rapidly changing environments associated with human activity. However, it is unclear whether such environments are selecting for increases in behavioural plasticity, and whether some species show more pronounced evolutionary changes in plasticity. To test whether anthropogenic environ- ments are selecting for increased behavioural plasticity within species, we measured variation in relative cranial capacity over time and space in 10 species of mammals. We predicted that urban populations would show greater cranial capacity than rural populations and that cranial capacity would increase over time in urban populations. Based on relevant theory, we also predicted that species capable of rapid population growth would show more pronounced evolutionary responses. We found that urban populations of two small mammal species had significantly greater cranial capacity than rural populations. In addition, species with higher fecundity showed more pronounced differentiation between urban and rural populations. Contrary to expectations, we found no increases in cranial capacity over time in urban populations—indeed, two species tended to have a decrease in cranial capacity over time in urban populations. Furthermore, rural populations of all insectivorous species measured showed significant increases in relative cranial capacity over time. Our results provide partial support for the hypothesis that urban environments select for increased behavioural plasticity, although this selection may be most pronounced early during the urban colonization process. Furthermore, these data also suggest that behavioural plasticity may be simultaneously favoured in rural environments, which are also changing because of human activity.
Located in Resources / Climate Science Documents
File PDF document Competitive and demographic leverage points of community shifts under climate warming
Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species’ responses are likely to drive shifts in the composition of a space- limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the impor- tance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identify- ing processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understand- ing of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns.
Located in Resources / Climate Science Documents
File PDF document The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe
Species interactions form food webs, impacting community structure and, potentially, ecological dynamics. It is likely that global climatic perturbations that occur over long periods of time have a significant influence on species interaction patterns. Here, we integrate stable isotope analysis and network theory to reconstruct patterns of trophic interactions for six independent mammalian communities that inhabited mammoth steppe environments spanning western Europe to eastern Alaska (Beringia) during the Late Pleis- tocene. We use a Bayesian mixing model to quantify the contribution of prey to the diets of local predators, and assess how the structure of trophic inter- actions changed across space and the Last Glacial Maximum (LGM), a global climatic event that severely impacted mammoth steppe communities. We find that large felids had diets that were more constrained than those of co-occurring predators, and largely influenced by an increase in Rangifer abun- dance after the LGM. Moreover, the structural organization of Beringian and European communities strongly differed: compared with Europe, species inter- actions in Beringian communities before—and possibly after—the LGM were highly modular. We suggest that this difference in modularity may have been driven by the geographical insularity of Beringian communities.
Located in Resources / Climate Science Documents
File PDF document Extreme contagion in global habitat clearance
Habitat clearance remains the major cause of biodiversity loss, with consequences for ecosystem services and for people. In response to this, many global conservation schemes direct funds to regions with high rates of recent habitat destruction, though some also emphasize the conservation of remaining large tracts of intact habitat. If the pattern of habitat clearance is highly contagious, the latter approach will help prevent destructive processes gaining a foothold in areas of contiguous intact habitat. Here, we test the strength of spatial contagion in the pattern of habitat clearance. Using a global dataset of land-cover change at 50 􏰢 50 km resolution, we discover that intact habitat areas in grid cells are refractory to clearance only when all neighbouring cells are also intact. The likelihood of loss increases dramatically as soon as habitat is cleared in just one neighbouring cell, and remains high thereafter. This effect is consistent for forests and grassland, across biogeographic realms and over centuries, constituting a coherent global pattern. Our results show that landscapes become vulnerable to wholesale clearance as soon as threatening processes begin to penetrate, so actions to prevent any incursions into large, intact blocks of natural habitat are key to their long-term persistence. Keywords: habitat loss; global change biology; conservation; wilderness
Located in Resources / Climate Science Documents
File PDF document Adapting to flood risk under climate change
Flooding is the most common natural hazard and third most damaging globally after storms and earthquakes. Anthropogenic climate change is expected to increase flood risk through more frequent heavy precipitation, increased catchment wetness and sea level rise. This paper reviews steps being taken by actors at international, national, regional and community levels to adapt to flood risk from tidal, fluvial, surface and groundwater sources. We refer to existing inventories, national and sectoral adaptation plans, flood inqui- ries, building and planning codes, city plans, research literature and international policy reviews. We dis- tinguish between the enabling environment for adaptation and specific implementing measures to manage flood risk. Enabling includes routine monitoring, flood forecasting, data exchange, institutional reform, bridging organizations, contingency planning for disasters, insurance and legal incentives to reduce vulner- ability. All such activities are ‘low regret’ in that they yield benefits regardless of the climate scenario but are not cost-free. Implementing includes climate safety factors for new build, upgrading resistance and resilience of existing infrastructure, modifying operating rules, development control, flood forecasting, temporary and permanent retreat from hazardous areas, periodic review and adaptive management. We identify evidence of both types of adaptation following the catastrophic 2010/11 flooding in Victoria, Australia. However, signif- icant challenges remain for managing transboundary flood risk (at all scales), protecting existing property at risk from flooding, and ensuring equitable outcomes in terms of risk reduction for all. Adaptive management also raises questions about the wider preparedness of society to systematically monitor and respond to evol- ving flood risks and vulnerabilities. Keywords adaptation, climate change, flood, natural hazards, risk, Victoria, vulnerability
Located in Resources / Climate Science Documents
File PDF document Importance of matrix habitats in maintaining biological diversity
Matrix management matters because formal reserve systems will never cover more than a small fraction of the globe.
Located in Resources / Climate Science Documents
File PDF document Effect of habitat area and isolation on fragmented animal populations
Habitat destruction has driven many once-contiguous animal populations into remnant patches of varying size and isolation. The underlying framework for the conservation of fragmented popu- lations is founded on the principles of island biogeography, wherein the probability of species occurrence in habitat patches varies as a function of patch size and isolation. Despite decades of research, the general importance of patch area and isolation as predictors of species occupancy in fragmented terrestrial systems remains unknown because of a lack of quantitative synthesis. Here, we compile occupancy data from 1,015 bird, mammal, reptile, amphibian, and invertebrate population networks on 6 continents and show that patch area and isolation are surprisingly poor predictors of occupancy for most species. We examine factors such as improper scaling and biases in species representation as expla- nations and find that the type of land cover separating patches most strongly affects the sensitivity of species to patch area and isolation. Our results indicate that patch area and isolation are indeed important factors affecting the occupancy of many species, but properties of the intervening matrix should not be ignored. Improving matrix quality may lead to higher conservation returns than manipulating the size and configuration of remnant patches for many of the species that persist in the aftermath of habitat destruction. incidence function 􏰂 island biogeography 􏰂 logistic regression 􏰂 metaanalysis 􏰂 occupancy
Located in Resources / Climate Science Documents