Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4374 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Conservation Biology: Predicting Birds’ Responses to Forest Fragmentation
Understanding species’ ecological responses to habitat fragmentation is critical for biodiversity conservation, especially in tropical forests. A detailed recent study has shown that changes in the abundances of bird species following fragmentation may be dramatic and unpredictable.
Located in Resources / Climate Science Documents
File PDF document The subnivium: a deteriorating seasonal refugium
For many terrestrial organisms in the Northern Hemisphere, winter is a period of resource scarcity and energy deficits, survivable only because a seasonal refugium – the “subnivium” – exists beneath the snow. The warmer and more stable conditions within the subnivium are principally driven by snow duration, density, and depth. In temperate regions, the subnivium is important for the overwintering success of plants and animals, yet winter conditions are changing rapidly worldwide. Throughout the Northern Hemisphere, the impacts of climate change are predicted to be most prominent during the winter months, resulting in a shorter snow season and decreased snow depth. These climatic changes will likely modify the defining qualities of the subnivium, resulting in broad-scale shifts in distributions of species that are dependent on these refugia. Resultant changes to the subnivium, however, will be spatially and temporally variable. We believe that ecologists and managers are overlooking this widespread, crucial, and vulnerable seasonal refugium, which is rapidly deteriorating due to global climate change.
Located in Resources / Climate Science Documents
File PDF document Effects of Climatic Variability and Change on Forest Ecosystems: General Technical Report PNW-GTR-870 December 2012
This report is a scientific assessment of the current condition and likely future condition of forest resources in the United States relative to climatic variability and change. It serves as the U.S. Forest Service forest sector technical report for the National Climate Assessment and includes descriptions of key regional issues and examples of a risk-based framework for assessing climate-change effects. By the end of the 21st century, forest ecosystems in the United States will differ from those of today as a result of changing climate. Although increases in temperature, changes in precipitation, higher atmospheric concentrations of carbon dioxide (CO2), and higher nitrogen (N) deposition may change ecosystem structure and function, the most rapidly visible and most significant short-term effects on forest ecosystems will be caused by altered disturbance regimes. For example, wildfires, insect infestations, pulses of erosion and flooding, and drought-induced tree mortality are all expected to increase during the 21st century. These direct and indirect climate-change effects are likely to cause losses of ecosystem services in some areas, but may also improve and expand ecosystem services in others. Some areas may be particularly vulnerable because current infrastructure and resource production are based on past climate and steady-state conditions. The ability of communities with resource-based economies to adapt to climate change is linked to their direct exposure to these changes, as well as to the social and institutional structures present in each environment. Human communities that have diverse economies and are resilient to change today will also be prepared for future climatic stresses.
Located in Resources / Climate Science Documents
File PDF document Spatiotemporal patterns of terrestrial carbon cycle during the 20th century
We evaluated how climate change, rising atmospheric CO2 concentration, and land use change influenced the terrestrial carbon (C) cycle for the last century using a process-based ecosystem model. Over the last century, the modeled land use change emitted about 129 Pg of C to the atmosphere. .... Generally, interannual changes of carbon fluxes in tropical and temperate ecosystems are mainly explained by precipitation variability, while temperature variability plays a major role in boreal ecosystems.
Located in Resources / Climate Science Documents
File PDF document Incorporating climate change adaptation into national conservation assessments
The Convention on Biological Diversity requires that member nations establish protected area networks that are representative of the country’s biodiversity. The identification of priority sites to achieve outstanding representation targets is typically accomplished through formal conservation assessments. However, representation in conservation assessments or gap analyses has largely been interpreted based on a static view of biodiversity. In a rapidly changing climate, the speed of changes in biodiversity distribution and abundance is causing us to rethink the viability of this approach. Here we describe three explicit strategies for climate change adaptation as part of national conservation assessments: conserving the geophysical stage, identifying and protecting climate refugia, and promoting cross- environment connectivity. We demonstrate how these three approaches were integrated into a national terrestrial conservation assessment for Papua New Guinea, one of the most biodiverse countries on earth. Protected areas identified based on representing geophysical diversity were able to capture over 90% of the diversity in vegetation communities, suggesting they could help protect representative biodiversity regardless of changes in the distribution of species and communities. By including climate change refugia as part of the national conservation assessment, it was possible to substantially reduce the amount of environmental change expected to be experienced within protected areas, without increasing the overall cost of the protected area network. Explicitly considering environmental heterogeneity between adjacent areas resulted in protected area networks with over 40% more internal environmental connectivity. These three climate change adaptation strategies represent defensible ways to guide national conserva- tion priority given the uncertainty that currently exists in our ability to predict climate changes and their impacts. Importantly, they are also consistent with data and expertise typically available during national conservation assessments, including in developing nations. This means that in the vast majority of countries, these strategies could be implemented immediately. Keywords: biodiversity, connectivity, convention on biological diversity, gap analyses, geophysical classification, Marxan, Papua New Guinea, protected areas, refugia, systematic conservation planning
Located in Resources / Climate Science Documents
File PDF document Effects of drought on avian community structure
Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most relevant, or how response varies geographically at broad spatial scales. Our goals were thus to determine (1) how avian abundance and species richness are related to drought, (2) whether community variations are more related to vegetation vigour or precipitation deviations and at what time periods relationships were strongest, (3) how response varies among avian guilds, and (4) how response varies among ecoregions with different precipitation regimes. Using mixed effect models and 1989–2005 North American Breeding Bird Survey data over the central United States, we examined the response to 10 precipitation- and greenness- based metrics by abundance and species richness of the avian community overall, and of four behavioural guilds. Drought was associated with the most negative impacts on avifauna in the semiarid Great Plains, while positive responses were observed in montane areas. Our models predict that in the plains, Neotropical migrants respond the most negatively to extreme drought, decreasing by 13.2% and 6.0% in abundance and richness, while permanent resident abundance and richness increase by 11.5% and 3.6%, respectively in montane areas. In most cases, response of abundance was greater than richness and models based on precipitation metrics spanning 32-week time periods were more supported than those covering shorter time periods and those based on greenness. While drought is but one of myriad environmental variations birds encounter, our results indicate that drought is capable of imposing sizable shifts in abundance, richness, and composition on avian communities, an important implica- tion of a more climatically variable future. Keywords: abundance, birds, drought, Great Plains, greenness, mixed effects models, North American Breeding Bird Survey, precipitation, richness, United States
Located in Resources / Climate Science Documents
File PDF document Climate change and the invasion of California by grasses
Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait differences between groups allows us to predict changes in the exotic-native balance under climate change scenarios. Exotic species are more likely to be annual, taller, with larger leaves, larger seeds, higher specific leaf area, and higher leaf N percentage than native species. Across the state, all these traits are associated with regions with higher temperature. Therefore, we predict that increasing temperatures will favor trait states that tend to be possessed by exotic species, increasing the dominance of exotic species. This prediction is corroborated by the current distribution of exotic species richness relative to native richness in California; warmer areas contain higher proportions of exotic species. This pattern was very well captured by a simple model that predicts invasion severity given only the trait–climate relationship for native species and trait differences between native and exotic species. This study provides some of the first evidence for an important interaction between climate change and species invasions across very broad geographic and taxonomic scales.
Located in Resources / Climate Science Documents
File PDF document On the forest cover–water yield debate: from demand- to supply-side thinking
Several major articles from the past decade and beyond conclude the impact of reforestation or afforestation on water yield is negative: additional forest cover will reduce and removing forests will raise downstream water availability. A second group of authors argue the opposite: planting additional forests should raise downstream water availability and intensify the hydrologic cycle. Obtaining supporting evidence for this second group of authors has been more dif- ficult due to the larger scales at which the positive effects of forests on the water cycle may be seen. We argue that for- est cover is inextricably linked to precipitation. Forest-driven evapotranspiration removed from a particular catchment contributes to the availability of atmospheric moisture vapor and its cross-continental transport, raising the likelihood of precipitation events and increasing water yield, in particular in continental interiors more distant from oceans. Sea- sonal relationships heighten the importance of this phenomenon. We review the arguments from different scales and perspectives. This clarifies the generally beneficial relationship between forest cover and the intensity of the hydro- logic cycle. While evidence supports both sides of the argument – trees can reduce runoff at the small catchment scale – at larger scales, trees are more clearly linked to increased precipitation and water availability. Progressive deforesta- tion, land conversion from forest to agriculture and urbanization have potentially negative consequences for global precipitation, prompting us to think of forest ecosystems as global public goods. Policy-making attempts to measure product water footprints, estimate the value of ecosystem services, promote afforestation, develop drought mitigation strategies and otherwise manage land use must consider the linkage of forests to the supply of precipitation. Keywords: afforestation, climate change adaptation, forest ecosystem services, precipitation recycling, water yield
Located in Resources / Climate Science Documents
File PDF document Temperature and precipitation controls over leaf- and ecosystem-level CO2 flux along a woody plant encroachment gradient
Conversion of grasslands to woodlands may alter the sensitivity of CO2 exchange of individual plants and entire ecosystems to air temperature and precipitation. We combined leaf-level gas exchange and ecosystem-level eddy covariance measurements to quantify the effects of plant temperature sensitivity and ecosystem temperature responses within a grassland and mesquite woodland across seasonal precipitation periods. In so doing, we were able to estimate the role of moisture availability on ecosystem temperature sensitivity under large-scale vegetative shifts. Optimum temperatures (Topt) for net photosynthetic assimilation (A) and net ecosystem productivity (NEP) were estimated from a function fitted to A and NEP plotted against air temperature. The convexities of these tem- perature responses were quantified by the range of temperatures over which a leaf or an ecosystem assimilated 50% of maximum NEP (Ω50). Under dry pre- and postmonsoon conditions, leaf-level Ω50 in C3 shrubs were two-to-three times that of C4 grasses, but under moist monsoon conditions, leaf-level Ω50 was similar between growth forms. At the ecosystems-scale, grassland NEP was more sensitive to precipitation, as evidenced by a 104% increase in maxi- mum NEP at monsoon onset, compared to a 57% increase in the woodland. Also, woodland NEP was greater across all temperatures experienced by both ecosystems in all seasons. By maintaining physiological function across a wider temperature range during water-limited periods, woody plants assimilated larger amounts of carbon. This higher carbon-assimilation capacity may have significant implications for ecosystem responses to projected climate change scenarios of higher temperatures and more variable precipitation, particularly as semiarid regions experi- ence conversions from C4 grasses to C3 shrubs. As regional carbon models, CLM 4.0, are now able to incorporate functional type and photosynthetic pathway differences, this work highlights the need for a better integration of the interactive effects of growth form/functional type and photosynthetic pathway on water resource acquisition and temperature sensitivity. Keywords: eddy covariance, mesquite (Prosopis velutina), net ecosystem exchange, photosynthesis, respiration, temperature optima, vegetative change, woody plant encroachment
Located in Resources / Climate Science Documents
File PDF document Soil organic matter turnover is governed by accessibility not recalcitrance
Mechanisms to mitigate global climate change by sequestering carbon (C) in different ‘sinks’ have been proposed as at least temporary measures. Of the major global C pools, terrestrial ecosystems hold the potential to capture and store substantially increased volumes of C in soil organic matter (SOM) through changes in management that are also of benefit to the multitude of ecosystem services that soils provide. This potential can only be realized by determining the amount of SOM stored in soils now, with subsequent quantification of how this is affected by management strate- gies intended to increase SOM concentrations, and used in soil C models for the prediction of the roles of soils in future climate change. An apparently obvious method to increase C stocks in soils is to augment the soil C pools with the longest mean residence times (MRT). Computer simulation models of soil C dynamics, e.g. RothC and Century, partition these refractory constituents into slow and passive pools with MRTs of centuries to millennia. This partition- ing is assumed to reflect: (i) the average biomolecular properties of SOM in the pools with reference to their source in plant litter, (ii) the accessibility of the SOM to decomposer organisms or catalytic enzymes, or (iii) constraints imposed on decomposition by environmental conditions, including soil moisture and temperature. However, con- temporary analytical approaches suggest that the chemical composition of these pools is not necessarily predictable because, despite considerable progress with understanding decomposition processes and the role of decomposer organisms, along with refinements in simulation models, little progress has been made in reconciling biochemical properties with the kinetically defined pools. In this review, we will explore how advances in quantitative analytical techniques have redefined the new understanding of SOM dynamics and how this is affecting the development and application of new modelling approaches to soil C. Keywords: C isotopes, decomposition, recalcitrance, soil C models, soil microorganisms, soil organic matter
Located in Resources / Climate Science Documents