Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
114 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
Image Aquatic Species Richness
Distribution of aquatic species richness by 20 kilometers grids throughout the Appalachian LCC region. At this scale, the hotspots of aquatic species richness are in southern Indiana (the Mitchell Plain) and central Kentucky (Mammoth Cave).
Located in Research / / Gallery: Cave and Karst Maps / Study Overview Maps and Foundational Datasets
File Upper Tennessee River Basin Strategy Communications Subteam - March 2016 Call
Notes from the Upper Tennessee River Basin Strategy Communications subteam call on March 7, 2016.
Located in Team and Partner Workspace / Communications
Service and partners announce science-based tool to help prioritize and target fish habitat conservation
The U.S. Fish and Wildlife Service and North Atlantic Landscape Conservation Cooperative (LCC) today announce the availability of an online tool that enables users to target and prioritize fish habitat conservation in the face of climate and land use change.
Located in News & Events
Power Companies, Tribe, Agencies Take Steps to Save Rare Fish
Power companies, the Eastern Band of Cherokee Indians, and state and federal agencies have come together to conserve the sicklefin redhorse, a fish found in only six Appalachian counties worldwide and being considered for the federal endangered species list.
Located in News & Events
File Effect of fine wood on juvenile brown trout behaviour in experimental stream channels
In-stream wood can increase shelter availability and prey abundance for stream-living fish such as brown trout, Salmo trutta, but the input of wood to streams has decreased in recent years due to harvesting of riparian vegetation. During the last decades, fine wood (FW) has been increasingly used for biofuel, and the input of FW to streams may therefore decrease. Although effects of in-stream FW have not been studied as extensively as those of large wood (LW), it is probably important as shelter for small-sized trout. In a laboratory stream experiment, we tested the behavioural response of young-of-the-year wild brown trout to three densities of FW, with trout tested alone and in groups of four. Video recordings were used to measure the proportion of time allocated to sheltering, cruising and foraging, as well as the number of aggressive interactions and prey attacks. Cruising activity increased with decreasing FW density and was higher in the four-fish groups than when fish were alone. Foraging decreased and time spent sheltering in FW increased with increasing FW density. Our study shows that juvenile trout activity is higher in higher fish densities and that trout response to FW is related to FW density and differs from the response to LW as reported by others.
Located in Resources / Climate Science Documents
File Accounting for groundwater in stream fish thermal habitat responses to climate change
Forecasting climate change effects on aquatic fauna and their habitat requires an understanding of how water temperature responds to changing air temperature (i.e., thermal sensitivity). Previous efforts to forecast climate effects on brook trout (Salvelinus fontinalis) habitat have generally assumed uniform air–water temperature relationships over large areas that cannot account for groundwater inputs and other processes that operate at finer spatial scales. We developed regression models that accounted for groundwater influences on thermal sensitivity from measured air–water temperature relationships within forested watersheds in eastern North America (Shenandoah National Park, Virginia, USA, 78 sites in nine watersheds). We used these reach-scale models to forecast climate change effects on stream temperature and brook trout thermal habitat, and compared our results to previous forecasts based upon large-scale models. Observed stream temperatures were generally less sensitive to air temperature than previously assumed, and we attribute this to the moderating effect of shallow groundwater inputs. Predicted groundwater temperatures from air–water regression models corresponded well to observed groundwater temperatures elsewhere in the study area. Predictions of brook trout future habitat loss derived from our fine-grained models were far less pessimistic than those from prior models developed at coarser spatial resolutions. However, our models also revealed spatial variation in thermal sensitivity within and among catchments resulting in a patchy distribution of thermally suitable habitat. Habitat fragmentation due to thermal barriers therefore may have an increasingly important role for trout population viability in headwater streams. Our results demonstrate that simple adjustments to air–water temperature regression models can provide a powerful and cost-effective approach
Located in Resources / Climate Science Documents
File text/texmacs Seeing the landscape for the trees: Metrics to guide riparian shade management in river catchments
Rising water temperature (Tw) due to anthropogenic climate change may have serious conse- quences for river ecosystems. Conservation and/or expansion of riparian shade could counter warming and buy time for ecosystems to adapt. However, sensitivity of river reaches to direct solar radiation is highly het- erogeneous in space and time, so benefits of shading are also expected to be site specific. We use a network of high-resolution temperature measurements from two upland rivers in the UK, in conjunction with topo- graphic shade modeling, to assess the relative significance of landscape and riparian shade to the thermal behavior of river reaches. Trees occupy 7% of the study catchments (comparable with the UK national aver- age) yet shade covers 52% of the area and is concentrated along river corridors. Riparian shade is most ben- eficial for managing Tw at distances 5–20 km downstream from the source of the rivers where discharge is modest, flow is dominated by near-surface hydrological pathways, there is a wide floodplain with little land- scape shade, and where cumulative solar exposure times are sufficient to affect Tw. For the rivers studied, we find that approximately 0.5 km of complete shade is necessary to off-set Tw by 18C during July (the month with peak Tw) at a headwater site; whereas 1.1 km of shade is required 25 km downstream. Further research is needed to assess the integrated effect of future changes in air temperature, sunshine duration, direct solar radiation, and downward diffuse radiation on Tw to help tree planting schemes achieve
Located in Resources / Climate Science Documents
File Troff document Increasing Northern Hemisphere water deficit
A monthly water-balance model is used with CRUTS3.1 gridded monthly precip- itation and potential evapotranspiration (PET) data to examine changes in global water deficit (PET minus actual evapotranspiration) for the Northern Hemisphere (NH) for the years 1905 through 2009. Results show that NH deficit increased dramatically near the year 2000 during both the cool (October through March) and warm (April through September) seasons. The increase in water deficit near 2000 coincides with a substantial increase in NH temperature and PET. The most pronounced increases in deficit occurred for the latitudinal band from 0 to 40°N. These results indicate that global warming has increased the water deficit in the NH and that the increase since 2000 is unprecedented for the 1905 through 2009 period. Additionally, coincident with the increase in deficit near 2000, mean NH runoff also increased due to increases in P. We explain the apparent contradiction of concurrent increases in deficit and increases in runoff.
Located in Resources / Climate Science Documents
File text/texmacs Interior Low Plateau subregion climate change vulnerability species assessments
These results are a compilation of climate change vulnerability assessments in the western portion of the LCC, covering the area from Western Kentucky, northeastern Alabama and western Tennessee west to southern Indiana and southeastern Illinois. Results included are from Bruno et al. (Cumberland Piedmont Network of the National Park Service; and Walk et al. 2011 (illinois). It also includes the results from species assessed as part of the current study (Sneddon et al. 2015).
Located in Research / / Assessing Vulnerability of Species and Habitats to Large-scale Impacts / Vulnerability Assessment Foundational Data by Subregion
File text/texmacs Interior Low Plateau subregion climate change vulnerability species assessments
These results are a compilation of climate change vulnerability assessments in the western portion of the LCC, covering the area from Western Kentucky, northeastern Alabama and western Tennessee west to southern Indiana and southeastern Illinois. Results included are from Bruno et al. (Cumberland Piedmont Network of the National Park Service; and Walk et al. 2011 (illinois). It also includes the results from species assessed as part of the current study (Sneddon et al. 2015).
Located in Vulnerability / Climate Change Vulnerability / Vulnerability Assessment Foundational Data by Subregion