Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
62 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Adapting to flood risk under climate change
Flooding is the most common natural hazard and third most damaging globally after storms and earthquakes. Anthropogenic climate change is expected to increase flood risk through more frequent heavy precipitation, increased catchment wetness and sea level rise. This paper reviews steps being taken by actors at international, national, regional and community levels to adapt to flood risk from tidal, fluvial, surface and groundwater sources. We refer to existing inventories, national and sectoral adaptation plans, flood inqui- ries, building and planning codes, city plans, research literature and international policy reviews. We dis- tinguish between the enabling environment for adaptation and specific implementing measures to manage flood risk. Enabling includes routine monitoring, flood forecasting, data exchange, institutional reform, bridging organizations, contingency planning for disasters, insurance and legal incentives to reduce vulner- ability. All such activities are ‘low regret’ in that they yield benefits regardless of the climate scenario but are not cost-free. Implementing includes climate safety factors for new build, upgrading resistance and resilience of existing infrastructure, modifying operating rules, development control, flood forecasting, temporary and permanent retreat from hazardous areas, periodic review and adaptive management. We identify evidence of both types of adaptation following the catastrophic 2010/11 flooding in Victoria, Australia. However, signif- icant challenges remain for managing transboundary flood risk (at all scales), protecting existing property at risk from flooding, and ensuring equitable outcomes in terms of risk reduction for all. Adaptive management also raises questions about the wider preparedness of society to systematically monitor and respond to evol- ving flood risks and vulnerabilities. Keywords adaptation, climate change, flood, natural hazards, risk, Victoria, vulnerability
Located in Resources / Climate Science Documents
File PDF document Biotic Drivers of Stream Planform: Implications for Understanding the Past and Restoring the Future
Traditionally, stream channel planform has been viewed as a function of larger watershed and valley-scale physical variables, including valley slope, the amount of discharge, and sediment size and load. Biotic processes serve a crucial role in transforming channel planform among straight, braided, meandering, and anabranching styles by increasing stream-bank stability and the probability of avulsions, creating stable multithread (anabranching) channels, and affecting sedimentation dynamics. We review the role of riparian vegetation and channel-spanning obstructions—beaver dams and logjams—in altering channel–floodplain dynamics in the southern Rocky Mountains, and we present channel planform scenarios for combinations of vegetation and beaver populations or old-growth forest that control logjam formation. These conceptual models provide understanding of historical planform variability throughout the Holocene and outline the implications for stream restoration or management in broad, low-gradient headwater valleys, which are important for storing sediment, carbon, and nutrients and for supporting a diverse riparian community. Keywords: stream planform, riparian vegetation, beaver, old-growth forest, restoration
Located in Resources / Climate Science Documents
File PDF document Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park
Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species’ vulnerability do not adequately consider such impacts. global warming 􏰚 landscape change 􏰚 remote sensing 􏰚 amphibian community 􏰚 drought
Located in Resources / Climate Science Documents
File PDF document Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture
Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (Kleaf) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that Kleaf relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of Kleaf to damage; severing the midrib caused Kleaf and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces Kleaf, we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of Kleaf, was lower with greater major vein density and smaller leaf size (|r| = 0.85–0.90; P , 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size.
Located in Resources / Climate Science Documents
File PDF document Ecological and Evolutionary Responses to Recent Climate Change
Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
Located in Resources / Climate Science Documents
File PDF document Elevation-dependent influence of snow accumulation on forest greening
Rising temperatures and declining water availability have influenced the ecological function of mountain forests over the past half-century. For instance, warming in spring and summer and shifts towards earlier snowmelt are associated with an increase in wildfire activity and tree mortality in mountain forests in the western United States (1,2). Temperature increases are expected to continue during the twenty-first century in mountain ecosystems across the globe (3,4), with uncertain consequences. Here, we examine the influence of interannual variations in snowpack accumulation on forest greenness in the Sierra Nevada Mountains, California, between 1982 and 2006. Using observational records of snow accumulation and satellite data on vegetation greenness we show that vegetation greenness increases with snow accumulation. Indeed, we show that variations in maximum snow accumulation explain over 50% of the interannual variability in peak forest greenness across the Sierra Nevada region. The extent to which snow accumulation can explain variations in greenness varies with elevation, reaching a maximum in the water-limited mid- elevations, between 2,000 and 2,600 m. In situ measurements of carbon uptake and snow accumulation along an elevational transect in the region confirm the elevation dependence of this relationship. We suggest that mid-elevation mountain forest ecosystems could prove particularly sensitive to future increases in temperature and concurrent changes in snow accumulation and melt.
Located in Resources / Climate Science Documents
File PDF document Editorial : Half-hearted engineering
Climate warming is not the only consequence of rising levels of atmospheric greenhouse gases. The only way to counter all effects, including those on rainfall and ocean acidity, is to remove carbon from the climate system. Arguably, some of the most immediate impacts of a warming climate will result from shifts in global rainfall patterns. The potential threats are diverse, and include water scarcity in the lush Amazonian rainforest; increased drought in the already parched southwestern United States; rainfall replacing snow in low-latitude mountain regions; and a rise in flooding in temperate climates. Whatever the exact outcome of these threats, the stability of the world’s economy and ecosystem both depend on maintaining precipitation patterns more or less as they are today.
Located in Resources / Climate Science Documents
File PDF document Ecohydrologic separation of water between trees and streams in a Mediterranean climate
Water movement in upland humid watersheds from the soil surface to the stream is often described using the concept of translatory flow (1,2), which assumes that water entering the soil as precipitation displaces the water that was present previously, pushing it deeper into the soil and eventually into the stream (2). Within this framework, water at any soil depth is well mixed and plants extract the same water that eventually enters the stream. Here we present water-isotope data from various pools throughout a small watershed in the Cascade Mountains, Oregon, USA. Our data imply that a pool of tightly bound water that is retained in the soil and used by trees does not participate in translatory flow, mix with mobile water or enter the stream. Instead, water from initial rainfall events after rainless summers is locked into small pores with low matric potential until transpiration empties these pores during following dry summers. Winter rainfall does not displace this tightly bound water. As transpiration and stormflow are out of phase in the Mediterranean climate of our study site, two separate sets of water bodies with different isotopic characteristics exist in trees and streams. We conclude that complete mixing of water within the soil cannot be assumed for similar hydroclimatic regimes as has been done in the past (3,4) .
Located in Resources / Climate Science Documents
File PDF document Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests
Tropical montane cloud forests (TMCFs) depend on predictable, frequent, and prolonged immersion in cloud. Clearing upwind lowland forest alters surface energy budgets in ways that influence dry season cloud fields and thus the TMCF environment. Landsat and Geostationary Operational Environmental Satellite imagery show that deforested areas of Costa Rica’s Caribbean lowlands remain relatively cloud-free when forested regions have well-developed dry season cumulus cloud fields. Further, regional atmospheric simulations show that cloud base heights are higher over pasture than over tropical forest areas under reasonable dry season conditions. These results suggest that land use in tropical lowlands has serious impacts on ecosystems in adjacent mountains.
Located in Resources / Climate Science Documents
File PDF document Density stratification in an estuary with complex geometry: Driving processes and relationship to hypoxia on monthly to inter-annual timescales
The density field in Narragansett Bay (NB), a northeast U.S. estuary with complex geometry that suffers hypoxia, is described and related to driving factors using monthly means from time series observations at 9 sites during late spring to early fall 2001–2009. Stratification (deep-shallow density difference) is dominated by salinity and strongest (4–7 kg m␣3 in late spring) near rivers in the north and east. Shallow horizontal density gradients are about 0.2 kg m␣3 km␣1; deep densities have minor spatial and seasonal variations. Geographic structure in density, and its inter-annual anomalies, is weaker than expected based on the complex geometry and large size relative to the internal deformation radius. Inter-annual variability is primarily driven by river flow and weakly influenced by winds, contrasting nearby systems (Chesapeake Bay, Long Island Sound), likely due to reduced fetch and/or unfavorable alignment with prevailing winds. Stratification response to river flow follows 2/3 power scaling despite that the theory omits important NB attributes (complex geometry, depth-varying horizontal gradients). Contrasting other systems (Delaware Bay, San Francisco Bay), horizontal gradients are at least as responsive to river forcing as theoretical 1/3 power scaling; depth-dependent horizontal gradients or finite basin constraint of intrusion length may be responsible. Bay-wide inter-annual variations in seasonal hypoxia correlate with late spring stratification, though stratification peaks in the north and east with hypoxia most severe in the north and west. Long-term response of stratification, and thus its role in hypoxia, to climate-driven increases in river flow and temperatures will be dominated by the former.
Located in Resources / Climate Science Documents