Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
23 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Afforestation Effects on Soil Carbon Storage in the United States: A Synthesis
Afforestation (tree establishment on nonforested land) is a management option for increasing terrestrial C sequestration and mitigating rising atmo- spheric carbon dioxide because, compared to nonforested land uses, afforestation increases C storage in aboveground pools. However, because terrestrial ecosystems typically store most of their C in soils, afforestation impacts on soil organic carbon (SOC) storage are critical components of eco- system C budgets. We applied synthesis methods to identify the magnitude and drivers of afforestation impacts on SOC, and the temporal and verti- cal distributions of SOC change during afforestation in the United States. Meta-analysis of 39 papers from 1957 to 2010 indicated that previous land use drives afforestation impacts on SOC in mineral soils (overall average = +21%), but mined and other industrial lands (+173%) and wildlands (+31%) were the only groups that specifically showed categorically significant increases. Temporal patterns of SOC increase were statistically significant on former industrial and agricultural lands (assessed by continuous meta- analysis), and suggested that meaningful SOC increases require ≥15 and 30 yr of afforestation, respectively. Meta-analysis of 13C data demonstrated the greatest SOC changes occur at the surface soil of the profile, although par- tial replacement of C stocks derived from previous land uses was frequently detectable below 1 m. A geospatial analysis of 409 profiles from the National Soil Carbon Network database supported 13C meta-analysis results, indicating that transition from cultivation to forest increased A horizon SOC by 32%. In sum, our findings demonstrate that afforestation has significant, positive effects on SOC sequestration in the United States, although these effects require decades to manifest and primarily occur in the uppermost (and per- haps most vulnerable) portion of the mineral soil profile. Abbreviations: BD, bulk density; CI, confidence interval; MAP, mean annual precipitation; MAT, mean annual temperature; SOC, soil organic carbon.
Located in Resources / Climate Science Documents
ASWM Webinar - Using Beaver as a Wetland Restoration Tool
Restoration Lessons Learned and an Introduction to the Beaver Restoration Assessment Tool
Located in News & Events / Events
File PDF document Biotic Drivers of Stream Planform: Implications for Understanding the Past and Restoring the Future
Traditionally, stream channel planform has been viewed as a function of larger watershed and valley-scale physical variables, including valley slope, the amount of discharge, and sediment size and load. Biotic processes serve a crucial role in transforming channel planform among straight, braided, meandering, and anabranching styles by increasing stream-bank stability and the probability of avulsions, creating stable multithread (anabranching) channels, and affecting sedimentation dynamics. We review the role of riparian vegetation and channel-spanning obstructions—beaver dams and logjams—in altering channel–floodplain dynamics in the southern Rocky Mountains, and we present channel planform scenarios for combinations of vegetation and beaver populations or old-growth forest that control logjam formation. These conceptual models provide understanding of historical planform variability throughout the Holocene and outline the implications for stream restoration or management in broad, low-gradient headwater valleys, which are important for storing sediment, carbon, and nutrients and for supporting a diverse riparian community. Keywords: stream planform, riparian vegetation, beaver, old-growth forest, restoration
Located in Resources / Climate Science Documents
Organization Eastern PA Coalition for Abandoned Mine Reclamation
The general purpose of the organization [EPCAMR] is to encourage the reclamation and redevelopment of land affected by past mining practices. This includes reducing hazards to health and safety, eliminating soil erosion, improving water quality, [and] returning land affected by past mining practices to productive use, thereby improving the economy of the region.
Located in LP Members / Organizations Search
File PDF document Ecological Restoration in the Light of Ecological History
Ecological history plays many roles in ecological restoration, most notably as a tool to identify and characterize appropriate targets for restoration efforts. However, ecological history also reveals deep human imprints on many ecological systems and indicates that secular climate change has kept many targets moving at centennial to millennial time scales. Past and ongoing environmental changes ensure that many historical restoration targets will be unsustainable in the coming decades. Ecological restoration efforts should aim to conserve and restore historical ecosystems where viable, while simultaneously preparing to design or steer emerging novel ecosystems to ensure maintenance of ecological goods and services.
Located in Resources / Climate Science Documents
File PDF document Effects of Flow Regulation on Shallow-Water Habitat Dynamics and Floodplain Connectivity
Our study examined the effects of flow regulation on the spatiotemporal availability of shallow habitat patches with slow current velocity (SSCV patches) and floodplain inundation in the unregulated Yellowstone River and the regulated Missouri River in Montana and North Dakota. We mapped representative sites and used hydraulic models and hydrograph data to describe the frequency and extent of floodplain inundation and the availability of SSCV habitat over time during different water years. In the Yellowstone River the distribution, location, and size of SSCV patches varied but followed an annual pattern that was tied to the snowmelt runoff hydrograph. There was less variation in patch distribution in the Missouri River, and the pattern of habitat availability was influenced by flow regulation. Regulated flows and their effects on channel mor- phology and patterns of vegetation establishment resulted in 3.0–3.5 times less area of inundated woody vegetation during normal and dry years in the Missouri River compared with the Yellow- stone River. The differences we observed in SSCV patch dynamics between rivers may have implications for fish populations and community structure through affecting the survival of early life stages. At a larger scale, the smaller area of vegetation inundated in the Missouri River suggests that nutrient cycling and the ecological benefits associated with a moving littoral zone are reduced by the altered flow and sediment regime in that river. Accurate assessments of the effects of flow alteration and successful efforts to restore riverine ecosystems will require consideration of physical and biotic processes that operate at multiple spatial and temporal scales.
Located in Resources / Climate Science Documents
File Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge
The importance of dead wood for biodiversity is widely recognized but strategies for conservation exist only in some regions worldwide. Most strategies combine knowledge from observational and experimental studies but remain preliminary as many facets of the complex relationships are unstudied. In this first global review of 79 experimental studies addressing biodiversity patterns in dead wood, we identify major knowledge gaps and aim to foster collaboration among researchers by providing a map of previous and ongoing experiments. We show that research has focused primarily on temperate and boreal forests, where results have helped in developing evidence-based conservation strategies, whereas comparatively few such efforts have been made in subtropical or tropical zones. Most studies have been limited to early stages of wood decomposition and many diverse and functionally important saproxylic taxa, e.g., fungi, flies and termites, remain under-represented. Our meta-analysis confirms the benefits of dead-wood addition for biodiversity, particularly for saproxylic taxa, but shows that responses of non-saproxylic taxa are heterogeneous. Our analysis indicates that global conservation of organisms associated with dead wood would benefit most by prioritizing research in the tropics and other neglected regions, focusing on advanced stages of wood decomposition and assessing a wider range of taxa. By using existing experimental set-ups to study advanced decay stages and additional taxa, results could be obtained more quickly and with less effort compared to initiating new experiments.
Located in Resources / Climate Science Documents
File PDF document Faustian bargains? Restoration realities in the context of biodiversity offset policies
The science and practice of ecological restoration are increasingly being called upon to compensate for the loss of biodiversity values caused by development projects. Biodiversity offsetting—compensating for losses of biodiversity at an impact site by generating ecologically equivalent gains elsewhere—therefore places substantial faith in the ability of restoration to recover lost biodiversity. Furthermore, the increase in offset-led restoration multiplies the consequences of failure to restore, since the promise of effective restoration may increase the chance that damage to biodiversity is permitted. But what evidence exists that restoration science and practice can reliably, or even feasibly, achieve the goal of ‘no net loss’ of biodiversity, and under what circumstances are successes and failures more likely? Using recent reviews of the restoration ecology literature, we examine the effectiveness of restoration as an approach for offsetting biodiversity loss, and conclude that many of the expectations set by current offset policy for ecological restoration remain unsupported by evidence. We introduce a conceptual model that illustrates three factors that limit the technical success of offsets: time lags, uncertainty and measurability of the value being offset. These factors can be managed to some extent through sound offset policy design that incorporates active adaptive management, time discounting, explicit accounting for uncertainty, and biodiversity banking. Nevertheless, the domain within which restoration can deliver ‘no net loss’ offsets remains small. A narrowing of the gap between the expectations set by offset policies and the practice of offsetting is urgently required and we urge the development of stronger links between restoration ecologists and those who make policies that are reliant upon restoration science. Keywords:Compensatory habitat - Conservation policy - Mitigation banking - Environmental risk - No net loss - Restoration success
Located in Resources / Climate Science Documents
Organization Unidata NetCDF document Horizon Environmental Inc.
Horizon is an industry-leading turnkey environmental services company with full-service capabilities, a track record for excellence and the determination to get the job done in the face of any challenge. Our history includes successful work during some of the most pressing environmental emergencies in the history of North America, including the Deepwater Horizon incident.
Located in LP Members / Organizations Search
Project Improved Recreational Fishing Through Community-based Oyster Reef Habitat Restoration, North Shore Eagle Point Oyster Restoration - Phase I and II
Oyster beds serve unique roles in estuaries, yet they are highly susceptible to over-harvesting, diseases and pollution. In addition to having both recreational and commercial value, oyster beds provide ecological benefits such as filtration and habitat for numerous species of invertebrates, fish, and plants.
Located in Resources / Whitewater to Bluewater W2B