Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
18 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document A LIDAR‐DERIVED EVALUATION OF WATERSHED‐SCALE LARGE WOODY DEBRIS SOURCES AND RECRUITMENT MECHANISMS: COASTAL MAINE, USA
In‐channel large woody debris (LWD) promotes quality aquatic habitat through sediment sorting, pool scouring and in‐stream nutrient retention and transport. LWD recruitment occurs by numerous ecological and geomorphic mechanisms including channel migration, mass wasting and natural tree fall, yet LWD sourcing on the watershed scale remains poorly constrained. We developed a rapid and spatially extensive method for using light detection and ranging data to do the following: (i) estimate tree height and recruitable tree abundance throughout a watershed; (ii) determine the likelihood for the stream to recruit channel‐spanning trees at reach scales and assess whether mass wasting or channel migration is a dominant recruitment mechanism; and (iii) understand the contemporary and future distribution of LWD at a watershed scale. We utilized this method on the 78‐km‐long Narraguagus River in coastal Maine and found that potential channel‐spanning LWD composes approximately 6% of the valley area over the course of the river and is concentrated in spatially discrete reaches along the stream, with 5 km of the river valley accounting for 50% of the total potential LWD found in the system. We also determined that 83% of all potential LWD is located on valley sides, as opposed to 17% on floodplain and terrace surfaces. Approximately 3% of channel‐spanning vegetation along the river is located within one channel width of the stream. By examining topographic and morphologic variables (valley width, channel sinuosity, valley‐ side slope) over the length of the stream, we evaluated the dominant recruitment processes along the river and often found a spatial disconnect between the location of potential channel‐spanning LWD and recruitment mechanisms, which likely explains the low levels of LWD currently found in the system. This rapid method for identification of LWD sources is extendable to other basins and may prove valuable in locating future restoration projects aimed at increasing habitat quality through wood additions. key words: large woody debris; lidar; river restoration; habitat
Located in Resources / Climate Science Documents
File Accounting for groundwater in stream fish thermal habitat responses to climate change
Forecasting climate change effects on aquatic fauna and their habitat requires an understanding of how water temperature responds to changing air temperature (i.e., thermal sensitivity). Previous efforts to forecast climate effects on brook trout (Salvelinus fontinalis) habitat have generally assumed uniform air–water temperature relationships over large areas that cannot account for groundwater inputs and other processes that operate at finer spatial scales. We developed regression models that accounted for groundwater influences on thermal sensitivity from measured air–water temperature relationships within forested watersheds in eastern North America (Shenandoah National Park, Virginia, USA, 78 sites in nine watersheds). We used these reach-scale models to forecast climate change effects on stream temperature and brook trout thermal habitat, and compared our results to previous forecasts based upon large-scale models. Observed stream temperatures were generally less sensitive to air temperature than previously assumed, and we attribute this to the moderating effect of shallow groundwater inputs. Predicted groundwater temperatures from air–water regression models corresponded well to observed groundwater temperatures elsewhere in the study area. Predictions of brook trout future habitat loss derived from our fine-grained models were far less pessimistic than those from prior models developed at coarser spatial resolutions. However, our models also revealed spatial variation in thermal sensitivity within and among catchments resulting in a patchy distribution of thermally suitable habitat. Habitat fragmentation due to thermal barriers therefore may have an increasingly important role for trout population viability in headwater streams. Our results demonstrate that simple adjustments to air–water temperature regression models can provide a powerful and cost-effective approach
Located in Resources / Climate Science Documents
Organization Arkansas Game and Fish Commission
The Arkansas Game and Fish Commission’s mission is to conserve and enhance Arkansas’s fish and wildlife and their habitats while promoting sustainable use, public understanding and support.
Located in LP Members / Organizations Search
File Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios
The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems—and the goods and services they provide—for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario — consistent with the Copenhagen Accord’s goal of a global temperature increase of less than 2°C — is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies.
Located in Resources / Climate Science Documents
Organization C source code Delaware Department of Natural Resources and Environmental Control
The Department of Natural Resources and Environmental Control (DNREC) envisions a Delaware that offers a healthy environment where people embrace a commitment to the protection, enhancement and enjoyment of the environment in their daily lives; where Delawareans’ stewardship of natural resources ensures the sustainability of these resources for the appreciation and enjoyment of future generations; and where people recognize that a healthy environment and a strong economy support one another.
Located in LP Members / Organizations Search
Project shell script Develop Artificial Estuarine Habitats in SC to Increase Abundance of Recreationally-Important Fish
This project will develop artificial estuarine habitats to increase abundance of recreationally important fish within South Carolina.
Located in Resources / Whitewater to Bluewater W2B
File Effect of fine wood on juvenile brown trout behaviour in experimental stream channels
In-stream wood can increase shelter availability and prey abundance for stream-living fish such as brown trout, Salmo trutta, but the input of wood to streams has decreased in recent years due to harvesting of riparian vegetation. During the last decades, fine wood (FW) has been increasingly used for biofuel, and the input of FW to streams may therefore decrease. Although effects of in-stream FW have not been studied as extensively as those of large wood (LW), it is probably important as shelter for small-sized trout. In a laboratory stream experiment, we tested the behavioural response of young-of-the-year wild brown trout to three densities of FW, with trout tested alone and in groups of four. Video recordings were used to measure the proportion of time allocated to sheltering, cruising and foraging, as well as the number of aggressive interactions and prey attacks. Cruising activity increased with decreasing FW density and was higher in the four-fish groups than when fish were alone. Foraging decreased and time spent sheltering in FW increased with increasing FW density. Our study shows that juvenile trout activity is higher in higher fish densities and that trout response to FW is related to FW density and differs from the response to LW as reported by others.
Located in Resources / Climate Science Documents
File Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge
The importance of dead wood for biodiversity is widely recognized but strategies for conservation exist only in some regions worldwide. Most strategies combine knowledge from observational and experimental studies but remain preliminary as many facets of the complex relationships are unstudied. In this first global review of 79 experimental studies addressing biodiversity patterns in dead wood, we identify major knowledge gaps and aim to foster collaboration among researchers by providing a map of previous and ongoing experiments. We show that research has focused primarily on temperate and boreal forests, where results have helped in developing evidence-based conservation strategies, whereas comparatively few such efforts have been made in subtropical or tropical zones. Most studies have been limited to early stages of wood decomposition and many diverse and functionally important saproxylic taxa, e.g., fungi, flies and termites, remain under-represented. Our meta-analysis confirms the benefits of dead-wood addition for biodiversity, particularly for saproxylic taxa, but shows that responses of non-saproxylic taxa are heterogeneous. Our analysis indicates that global conservation of organisms associated with dead wood would benefit most by prioritizing research in the tropics and other neglected regions, focusing on advanced stages of wood decomposition and assessing a wider range of taxa. By using existing experimental set-ups to study advanced decay stages and additional taxa, results could be obtained more quickly and with less effort compared to initiating new experiments.
Located in Resources / Climate Science Documents
Organization Georgia Wildlife Federation
In 1936, the objective of the Georgia Wildlife Federation was established, and it is the same today as it was over 80 years ago: To encourage the intelligent management of the life sustaining resources of the earth – its essential water resources – its protective forests and plant life – and its dependent wildlife – and to promote and encourage the knowledge and appreciation of these resources, their interrelationship and wise use, without which there can be little hope for a continuing abundant life.
Located in LP Members / Organizations Search
File Human mining activity across the ages determines the genetic structure of modern brown trout (Salmo trutta L.) populations
Humans have exploited the earth’s metal resources for thousands of years leaving behind a legacy of toxic metal contamination and poor water quality. The southwest of England provides a well-defined example, with a rich history of metal mining dating to the Bronze Age. Mine water washout continues to negatively impact water quality across the region where brown trout (Salmo trutta L.) populations exist in both metal-impacted and relatively clean rivers. We used micro- satellites to assess the genetic impact of mining practices on trout populations in this region. Our analyses demonstrated that metal-impacted trout populations have low genetic diversity and have experienced severe population declines. Metal-river trout populations are genetically distinct from clean-river populations, and also from one another, despite being geographically proximate. Using approximate Bayesian computation (ABC), we dated the origins of these genetic patterns to periods of intensive mining activity. The historical split of contemporary metal-impacted populations from clean-river fish dated to the Medieval period. Moreover, we observed two distinct genetic populations of trout within a single catchment and dated their divergence to the Industrial Revolution. Our investigation thus provides an evaluation of contemporary population genetics in showing how human-altered landscapes can change the genetic makeup of a species.
Located in Resources / Climate Science Documents