Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
29 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Allowable carbon emissions lowered by multiple climate targets
Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments1 places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond2–4. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise5 , ocean acidification6,7 and net primary production on land8,9. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced whenmultiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies10, climate sensitivity11 and carbon cycle feedbacks12,13 along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community14–17 to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.
Located in Resources / Climate Science Documents
File PDF document Growing feedback from ocean carbon to climate
The finding that feedbacks between the ocean’s carbon cycle and climate may become larger than terrestrial carbon–climate feedbacks has implications for the socio-economic effects of today’s fossil-fuel emissions.
Located in Resources / Climate Science Documents
File PDF document Too late for two degrees? Low carbon economy index 2012
Even doubling our current rate of decarbonisation would still lead to emissions consistent with 6 degrees of warming by the end of the century. To give ourselves a more than 50% chance of avoiding 2 degrees will require a six-fold improvement in our rate of decarbonisation.
Located in Resources / Climate Science Documents
File THE COST OF INACTION: RECOGNISING THE VALUE AT RISK FROM CLIMATE CHANGE
The asset management industry—and thus the wider community of investors of all sizes— is facing the prospect of significant losses from the effects of climate change. Assets can be directly damaged by floods, droughts and severe storms, but portfolios can also be harmed indirectly, through weaker growth and lower asset returns. Climate change is a long-term, probably irreversible problem beset by substantial uncertainty. Crucially, however, climate change is a problem of extreme risk: this means that the average losses to be expected are not the only source of concern; on the contrary, the outliers, the particularly extreme scenarios, may matter most of all.
Located in Resources / Climate Science Documents
File D source code Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind
Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth’s store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth’s battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown.
Located in Resources / Climate Science Documents
File Global non-linear effect of temperature on economic production
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies (1,2), but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries (3,4). In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature (5), while poor countries respond only linearly (5,6). Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human–natural systems (7,8) and to anticipating the global impact of climate change (9,10). Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non- linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 6C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change (11,12), with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Located in Resources / Climate Science Documents
National Workshop on Large Landscape Conservation
Join conservation practitioners and policy makers from across North America to share ideas on the challenges and opportunities in implementing large landscape conservation, as well as the most effective tools, strategies and science available to inform large landscape initiatives.
Located in News & Events / Events
Maryland's Trees Create a Truly Green Economy
Like many other states, Maryland has an active forest markets industry. Working with private landowners to practice sustainable forest management is paying off in spades.
Located in News & Events
USGS-NOAA: Climate Change Impacts to U.S. Coasts Threaten Public Health, Safety and Economy
According to a new technical report, the effects of climate change will continue to threaten the health and vitality of U.S. coastal communities' social, economic and natural systems.
Located in News & Events
Generational changes will have a big impact on natural resource jobs
A “perfect storm” describes a rare combination of circumstances coming together to aggravate a situation drastically. Steve McMullin, associate professor of fisheries and wildlife in Virginia Tech’s College of Natural Resources and Environment, predicts a perfect storm ahead for natural resource agencies, which will lose over 40 percent of their personnel in the next decade as baby boomers retire.
Located in News & Events