Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
272 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
Video LANDFIRE Data Applications for Research in Fire Ecology, Forest Mgmt in California
Brandon Collins presents the second in a series of webinars that LANDFIRE co-hosts with the California Fire Science Consortium. Collins is a USFS Research Forester based in Davis, CA, whose interests involve characterizing effects of fire and fuels treatments on forests at both the stand and landscape levels. He says, "My research intends to provide meaningful information to managers interested in improving forest resiliency and incorporating more natural fire-vegetation dynamics across landscapes."
Located in Training / Videos and Webinars
Extension Foundation course: the course is designed to introduce students to the fundamental basics of prescribed burning in Southeastern forested ecosystems. At the end of the course the student will have a working knowledge of fire law, fire terminology, fire prescriptions, fire safety, firebreaks, smoke management and a basic understanding of how to conduct a prescribed burn. This course is not intended to take the place of state Certification courses, workshops, or experience in the field. Rather, it is intended to give students a basic understanding of the principles of prescribed fire and fire effects.
Located in Training / Training Resources Exchange
Extension Foundation Campus: Basic Prescribed Fire Training is an online course for landowners, land managers, state/federal agency personnel. In this course participants will develop a basic knowledge of the use, application and effects of prescribed fire. For more information or to enroll, contact John Weir, Oklahoma State University, at john.weir@okstate.edu
Located in Training / Training Resources Exchange
The Longleaf Academy prepares natural resource professionals and private landowners to manage, restore, and enhance longleaf pine ecosystems. A program of The Longleaf Alliance that aims to create a uniformly well-informed network of longleaf ecosystem professionals. To browse their offerings, please visit their website.
Located in Training / Training Resources Exchange
File Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America
Widespread synchronous wildfires driven by climatic variation, such as those that swept western North America during 1996, 2000, and 2002, can result in major environmental and societal impacts. Understanding relationships between continental-scale patterns of drought and modes of sea surface temperatures (SSTs) such as El Nin ̃o-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) may explain how interannual to multidecadal variability in SSTs drives fire at continental scales. We used local wildfire chronologies recon- structed from fire scars on tree rings across western North America and independent reconstructions of SST developed from tree-ring widths at other sites to examine the relationships of multicentury patterns of climate and fire synchrony. From 33,039 annually resolved fire-scar dates at 238 sites (the largest paleofire record yet assembled), we examined forest fires at regional and subconti- nental scales. Since 1550 CE, drought and forest fires covaried across the West, but in a manner contingent on SST modes. During certain phases of ENSO and PDO, fire was synchronous within broad subregions and sometimes asynchronous among those re- gions. In contrast, fires were most commonly synchronous across the West during warm phases of the AMO. ENSO and PDO were the main drivers of high-frequency variation in fire (interannual to decadal), whereas the AMO conditionally changed the strength and spatial influence of ENSO and PDO on wildfire occurrence at multidecadal scales. A current warming trend in AMO suggests that we may expect an increase in widespread, synchronous fires across the western U.S. in coming decades. Atlantic Multidecadal Oscillation 􏰅 El Nino Southern Oscillation 􏰅 fire history network 􏰅 ocean warming 􏰅 Pacific Decadal Oscillation
Located in Resources / Climate Science Documents
Organization Northwest FL Prescribed Burn Association
The Northwest Florida Prescribed Burn Association (NWFPBA) is a non-profit organization consisting of private landowners and other conservation-minded individuals interested in getting more prescribed fire on the landscape. The Northwest Florida PBA brings together knowledge, experience, and resources to put good prescribed fire on more private lands throughout the area. The region covered by this PBA is from Madison County to Escambia County in Northwest Florida.
Located in LP Members / Organizations Search
File PDF document A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution Vol. 35
This paper reports on the development and validation of a new, global, burnt area product. Burnt areas are reported at a resolution of 1 km for seven fire years (2000 to 2007). A modified version of a Global Burnt Area (GBA) 2000 algorithm is used to compute global burnt area. The total area burnt each year (2000– 2007) is estimated to be between 3.5 million km2 and 4.5 million km2 . The total amount of vegetation burnt by cover type according to the Global Land Cover (GLC) 2000 product is reported. Validation was undertaken using 72 Landsat TM scenes was undertaken. Correlation statistics between estimated burnt areas are reported for major vegetation types. The accuracy of this new global data set depends on vegetation type.
Located in Resources / Climate Science Documents
File application/x-internet-signup Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains
Many of the largest wildfires in US history burned in recent decades, and climate change explains much of the increase in area burned. The frequency of extreme wildfire weather will increase with continued warming, but many uncertainties still exist about future fire regimes, including how the risk of large fires will persist as vegetation changes. Past fire-climate relationships provide an opportunity to constrain the related uncertainties, and reveal widespread burn- ing across large regions of western North America during past warm intervals. Whether such episodes also burned large portions of individual landscapes has been difficult to determine, however, because uncertainties with the ages of past fires and limited spatial resolution often prohibit specific estimates of past area burned. Accounting for these challenges in a subalpine landscape in Colorado, we estimated century-scale fire synchroneity across 12 lake- sediment charcoal records spanning the past 2,000 y. The percent- age of sites burned only deviated from the historic range of vari- ability during the Medieval Climate Anomaly (MCA) between 1,200 and 850 y B.P., when temperatures were similar to recent decades. Between 1,130 and 1,030 y B.P., 83% (median estimate) of our sites burned when temperatures increased ∼0.5 °C relative to the preceding centuries. Lake-based fire rotation during the MCA decreased to an estimated 120 y, representing a 260% higher rate of burning than during the period of dendroecological sampling (360 to −60 y B.P.). Increased burning, however, did not persist throughout the MCA. Burning declined abruptly before temperatures cooled, indicating possible fuel limitations to continued burning.
Located in Resources / Climate Science Documents
File Reform forest fire management: Agency incentives undermine policy effectiveness
Globally, wildfire size, severity, and frequency have been increasing, as have related fatalities and taxpayer- funded firefighting costs (1). In most accessible forests, wildfire response prioritizes suppression because fires are easier and cheaper to contain when small (2). In the United States, for example, 98% of wildfires are suppressed before reaching 120 ha in size (3). But the 2% of wildfires that escape containment often burn under extreme weather conditions in fuel-loaded forests and account for 97% of fire-fighting costs and total area burned (3). Changing climate and decades of fuel accumulation make efforts to suppress every fire dangerous, expensive, and ill advised (4).
Located in Resources / Climate Science Documents
File Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions
the u.s. department of agriculture (usda)-natural resources conservation service (nrcs) uses an ecological site description (esd) framework to help incorporate interactions between local soil, climate, flora, fauna, and humans into schema for land management decision-making. we demonstrate esd and digital soil mapping tools to (i) estimate potential o horizon carbon (c) stock accumulation from restoring alternative ecological states in high-elevation forests of the central appalachian Mountains in west Virginia (wV), usa, and (ii) map areas in alternative ecological states that can be targeted for restoration. this region was extensively disturbed by clear-cut harvests and related fires during the 1880s through 1930s. we combined spodic soil property maps, recently linked to historic red spruce–eastern hemlock (Picea rubens–Tsuga canadensis) forest communities, with current forest inventories to provide guidance for restoration to a historic reference state. this allowed mapping of alternative hardwood states within areas of the spodic shale uplands conifer forest (scF) ecological site, which is mapped along the regional conifer-hardwood transition of the central appalachian Mountains. Plots examined in these areas suggest that many of the spruce-hemlock dominated stands in wV converted to a hardwood state by historic disturbance have lost at least 10 cm of o horizon thickness, and possibly much more. Based on this 10 cm estimate, we calculate that at least 3.74 to 6.62 tg of c were lost from areas above 880 m elevation in wV due to historic disturbance of o horizons, and that much of these stocks and related ecosystem functions could potentially be restored within 100 yr under focused management, but more practical scenarios would likely require closer to 200 yr.
Located in Resources / Climate Science Documents