Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
96 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Climate change and disruptions to global fire activity
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From the ensemble results, we identify areas of consensus for increases or decreases in fire activity, as well as areas where GCMs disagree. Although certain biomes are sensitive to constraints on biomass productivity and others to atmospheric conditions promoting combustion, substantial and rapid shifts are projected for future fire activity across vast portions of the globe. In the near term, the most consistent increases in fire activity occur in biomes with already somewhat warm climates; decreases are less pronounced and concentrated primarily in a few tropical and subtropical biomes. However, models do not agree on the direction of near- term changes across more than 50% of terrestrial lands, highlighting major uncertainties in the next few decades. By the end of the century, the magnitude and the agreement in direction of change are projected to increase substantially. Most far-term model agreement on increasing fire probabilities (;62%) occurs at mid- to high-latitudes, while agreement on decreasing probabilities (;20%) is mainly in the tropics. Although our global models demonstrate that long-term environmental norms are very successful at capturing chronic fire probability patterns, future work is necessary to assess how much more explanatory power would be added through interannual variation in climate variables. This study provides a first examination of global disruptions to fire activity using an empirically based statistical framework and a multi-model ensemble of GCM projections, an important step toward assessing fire-related vulnerabilities to humans and the ecosystems upon which they depend. Key words: climatic constraints; ensemble model uncertainty; flammability; global climate models (GCM); GCM agreement; global fire probabilities; resources to burn; spatial statistical models; species distribution models.
Located in Resources / Climate Science Documents
File PDF document Climate change and the ecologist
The evidence for rapid climate change now seems overwhelming. Global temperatures are predicted to rise by up to 4 °C by 2100, with associated alterations in precipitation patterns. Assessing the consequences for biodiversity, and how they might be mitigated, is a Grand Challenge in ecology.
Located in Resources / Climate Science Documents
File PDF document Climate Change Challenges and Opportunities for Global Health
Editorial: Journal of the American Medical Association. Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaledclimate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average with air temperature data taken from the National Oceanic and Atmospheric Administration National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; and respiratory disorders, including those exacerbated by fine particulate pollutants, such as asthma and allergic disorders; infectious diseases, including vectorborne diseases and water-borne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic co-benefits could be associated with reductions in fossil fuel combustion. For example, the cost of greenhouse gas emission policies may yield net economic benefit, with health benefits from air quality improvements potentially offsetting the cost of US carbon policies. Evidence over the past 20 years indicates that climate change can be associated with adverse health outcomes. Health care professionals have an important role in understanding and communicating the related potential health concerns and the cobenefits from reducing greenhouse gas emissions.
Located in Resources / Climate Science Documents
File PDF document Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes
Thermal regimes in rivers and streams are fundamentally important to aquatic ecosystems and are expected to change in response to climate forcing as the Earth’s temperature warms. Description and attribution of stream temperature changes are key to understanding how these ecosystems may be affected by climate change, but difficult given the rarity of long-term monitoring data. We assembled 18 temperature time-series from sites on regulated and unregulated streams in the northwest U.S. to describe historical trends from 1980–2009 and assess thermal consistency between these stream categories. Statistically significant temperature trends were detected across seven sites on unregulated streams during all seasons of the year, with a cooling trend apparent during the spring and warming trends during the summer, fall, and winter. The amount of warming more than compensated for spring cooling to cause a net temperature increase, and rates of warming were highest during the summer (raw trend = 0.17°C/decade; reconstructed trend = 0.22°C/decade). Air temperature was the dominant factor explaining long-term stream temperature trends (82–94% of trends) and inter-annual variability (48–86% of variability), except during the summer when discharge accounted for approximately half (52%) of the inter-annual variation in stream temperatures. Seasonal temperature trends at eleven sites on regulated streams were qualitatively similar to those at unregulated sites if two sites managed to reduce summer and fall temperatures were excluded from the analysis. However, these trends were never statistically significant due to greater variation among sites that resulted from local water management policies and effects of upstream reservoirs. Despite serious deficiencies in the stream temperature monitoring record, our results suggest many streams in the northwest U.S. are exhibiting a regionally coherent response to climate forcing. More extensive monitoring efforts are needed as are techniques for short-term sensitivity analysis and reconstructing historical temperature trends so that spatial and temporal patterns of warming can be better understood. Continuation of warming trends this century will increasingly stress important regional salmon and trout resources and hamper efforts to recover these species, so comprehensive vulnerability assessments are needed to provide strategic frameworks for prioritizing conservation efforts.
Located in Resources / Climate Science Documents
File PDF document Climate change hotspots in the United States
We use a multi-model, multi-scenario climate model ensemble to identify climate change hotspots in the continental United States. Our ensemble consists of the CMIP3 atmosphere-ocean general circulation models, along with a high-resolution nested climate modeling system. We test both high (A2) and low (B1) greenhouse gas emissions trajectories, as well as two different statistical metrics for identifying regional climate change hotspots. We find that the pattern of peak responsiveness in the CMIP3 ensemble is persistent across variations in GHG concentration, GHG trajectory, and identification method. Areas of the southwestern United States and northern Mexico are the most persistent hotspots. The high-resolution climate modeling system produces highly localized hotspots within the basic GCM structure, but with a higher sensitivity to the identification method. Across the ensemble, the pattern of relative climate change hotspots is shaped primarily by changes in interannual variability of the contributing variables rather than by changes in the long-term mean
Located in Resources / Climate Science Documents
File PDF document Climate Change Puts Children in Jeopardy
From the text: Experts several years ago sounded the alarm on climate change’s potential harm to human health in the years to come. But the impact on a particularly vulnerable group—children—has not received a great deal of attention.
Located in Resources / Climate Science Documents
File PDF document Climate Change, Aboveground-Belowground Interactions, and Species’ Range Shifts
Changes in climate, land use, fire incidence, and ecological connections all may contribute to current species’ range shifts. Species shift range individually, and not all species shift range at the same time and rate. This variation causes community reorganization in both the old and new ranges. In terrestrial ecosystems, range shifts alter aboveground-belowground interactions, influencing species abundance, community composition, ecosystem processes and services, and feedbacks within communities and ecosystems. Thus, range shifts may result in no-analog communities where foundation species and community genetics play unprecedented roles, possibly leading to novel ecosystems. Long-distance dispersal can enhance the disruption of aboveground-belowground interactions of plants, herbivores, pathogens, symbiotic mutualists, and decomposer organisms. These effects are most likely stronger for latitudinal than for altitudinal range shifts. Disrupted aboveground-belowground interactions may have influenced historical postglacial range shifts as well. Assisted migration without considering aboveground-belowground interactions could enhance risks of such range shift–induced invasions.
Located in Resources / Climate Science Documents
File PDF document Climate: Sawyer predicted rate of warming in 1972
Excerpt: "In four pages Sawyer summarized what was known about the role of carbon dioxide in enhancing the natural greenhouse effect, and made a remarkable prediction of the warming expected at the end of the twentieth century.He concluded that the 25% increase in atmospheric carbon dioxide predicted to occur by 2000 corresponded to an increase of 0.6 °C in world temperature..... In fact the global surface temperature rose about 0.5 °C between the early 1970s and2000. Considering that global temperatures had, if anything, been falling in the decades leading up to the early 1970s, Sawyer’s prediction of a reversal of this trend, and of the correct magnitude of the warming, is perhaps the most remarkable long-range forecast ever made. Despite huge efforts, and advances in the science, the scientific consensus on the amount of global warming expected from increasing atmospheric carbon dioxide concentrations has changed little from that in Sawyer’s time.
Located in Resources / Climate Science Documents
File PDF document Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park
Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species’ vulnerability do not adequately consider such impacts. global warming 􏰚 landscape change 􏰚 remote sensing 􏰚 amphibian community 􏰚 drought
Located in Resources / Climate Science Documents
File PDF document Comment: Don’t judge species on their origins
SUMMARY: Conservationists should assess organisms on environmental impact rather than on whether they are natives, argue Mark Davis and 18 other ecologists. FROM THE TEXT: Nativeness is not a sign of evolutionary fitness or of a species having positive effects.The insect currently suspected to be killing more trees than any other in North Americais the native mountain pine beetle Dendroctonus ponderosae. Classifying biota according to their adherence to cultural standards of belonging, citizenship, fair play and morality does not advance our understanding of ecology. Over the past few decades, this perspective has led many conservation and restoration efforts down paths that make little ecological or economic sense
Located in Resources / Climate Science Documents