Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
47 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Carbon debt and carbon sequestration parity in forest bioenergy production
The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and serve as a substitute for fossil fuels, though such a practice could reduce terrestrial C storage and thereby increase atmospheric CO2 concentrations in the near-term. Here, we used an ecosystem simulation model to ascertain the effectiveness of using forest bioenergy as a substitute for fossil fuels, drawing from a broad range of land-use histories, harvesting regimes, ecosystem characteristics, and bioenergy conversion effi- ciencies. Results demonstrate that the times required for bioenergy substitutions to repay the C Debt incurred from biomass harvest are usually much shorter (< 100 years) than the time required for bioenergy production to substitute the amount of C that would be stored if the forest were left unharvested entirely, a point we refer to as C Sequestration Parity. The effectiveness of substituting woody bioenergy for fossil fuels is highly dependent on the factors that determine bioenergy conversion efficiency, such as the C emissions released during the har- vest, transport, and firing of woody biomass. Consideration of the frequency and intensity of biomass harvests should also be given; performing total harvests (clear-cutting) at high-frequency may produce more bioenergy than less intensive harvesting regimes but may decrease C storage and thereby prolong the time required to achieve C Sequestration Parity. Keywords: bioenergy, biofuel, C cycle, C sequestration, forest management
Located in Resources / Climate Science Documents
File PDF document Conservation threats: biofuel
Biofuels: Europe’s largest conservation charity has launched a campaign to heighten the threat to wildlife habitats and biodiversity from plantations of fuel crops. Nigel Williams reports. 1st paragraph: Europe embraced the theoretical potential that biofuels might offer both in terms of climate change and renewable sources of energy, as enthusiastically as anywhere else, but the dawning reality has hit harder here than in many other areas with the realisation that it is a crowded continent with limited scope for home-grown material.
Located in Resources / Climate Science Documents
File ECMAScript program Characterizing coal and mineral mines as a regional source of stress to stream fish assemblages
Mining impacts on stream systems have historically been studied over small spatial scales, yet investigations over large areas may be useful for characterizing mining as a regional source of stress to stream fishes. The associations between co-occurring stream fish assemblages and densities of various “classes” of mining occurring in the same catchments were tested using threshold analysis. Threshold analysis identifies the point at which fish assemblages change substantially from best available habitat conditions with increasing disturbance. As this occurred over large regions, species comprising fish assemblages were represented by various functional traits as well as other measures of interest to management (characterizing reproductive ecology and life history, habitat preferences, trophic ecology, assemblage diversity and evenness, tolerance to anthropogenic disturbance and state-recognized game species). We used two threshold detection methods: change-point analysis with indicator analysis and piecewise linear regression. We accepted only those thresholds that were highly statistically significant (p 0.01) for both techniques and overlapped within 5% error. We found consistent, wedge-shaped declines in multiple fish metrics with increasing levels of mining in catchments, suggesting mines are a regional source of disturbance. Threshold responses were consistent across the three ecoregions occurring at low mine densities. For 47.2% of the significant thresholds, a density of only 0.01 mines/km2 caused a threshold response. In fact, at least 25% of streams in each of our three study ecoregions have mine densities in their catchments with the potential to affect fish assemblages. Compared to other anthropogenic impacts assessed over large areas (agriculture, impervious surface or urban land use), mining had a more pronounced and consistent impact on fish assemblages. Threshold analysis Fish functional traits Landscape influences Game fishes Mining Rivers
Located in Resources / Climate Science Documents
File PDF document Animal migration amid shifting patterns of phenology and predation: lessons from a Yellowstone elk herd
Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring–summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence such seasonal ranges may alter the ecological basis of migratory behavior, representing an important challenge.
Located in Resources / Climate Science Documents
File PDF document Carbon sequestration in the U.S. forest sector from 1990 to 2010
From 1990 through 2005, the forest sector (including forests and wood products) sequestered an average 162 Tg C year1 . In 2005, 49% of the total forest sector sequestration was in live and dead trees, 27% was in wood products in landfills, with the remainder in down dead wood, wood products in use, and forest floor and soil. The pools with the largest carbon stocks were not the same as those with the largest sequestration rates, except for the tree pool. For example, landfilled wood products comprise only 3% of total stocks but account for 27% of carbon sequestration. Conversely, forest soils comprise 48% of total stocks but account for only 2% of carbon sequestration. For the tree pool, the spatial pattern of carbon stocks was dissimilar to that of carbon flux. On an area basis, tree carbon stocks were highest in the Pacific Northwest, while changes were generally greatest in the upper Midwest and the Northeast. Net carbon sequestration in the forest sector in 2005 offset 10% of U.S. CO2 emissions. In the near future, we project that U.S. forests will continue to sequester carbon at a rate similar to that in recent years. Based on a comparison of our estimates to a compilation of land-based estimates of non-forest carbon sinks from the literature, we estimate that the conterminous U.S. annually sequesters 149–330 Tg C year1. Forests, urban trees, and wood products are responsible for 65–91% of this sink.
Located in Resources / Climate Science Documents
File PDF document Allowable carbon emissions lowered by multiple climate targets
Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments1 places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond2–4. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise5 , ocean acidification6,7 and net primary production on land8,9. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced whenmultiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies10, climate sensitivity11 and carbon cycle feedbacks12,13 along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community14–17 to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.
Located in Resources / Climate Science Documents
File PDF document Amazon Basin climate under global warming: the role of the sea surface temperature
The Hadley Centre coupled climate–carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in midtwenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both thetropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.58C warmer air temperature associated with a global mean SST warming.
Located in Resources / Climate Science Documents
File PDF document Barking up the Wrong Tree? Forest Sustainability in the wake of Emerging Bioenergy Policies
The spotted owl controversy revealed that federal forest management policies alone could not guarantee functioning forest ecosystems. At the same time as the owl’s listing, agreements made at the 1992 Rio Earth Summit highlighted the mounting pressures on natural systems, thus unofficially marking the advent of sustainable forestry management (SFM).2 While threats to forest ecosystems from traditional logging practices certainly remain,3 developed and developing countries have shifted generally toward more sustainable forest management, at least on paper, including codifying various sustainability indicators in public laws.4 Nevertheless, dark policy clouds are gathering on the forest management horizon. Scientific consensus has grown in recent years around a new and arguably more onerous threat to all of the world’s ecosystems—climate change. Governments’ responses have focused on bioenergy policies aimed at curtailing anthropogenic greenhouse gas (GHG) emissions, and mandatesfor renewables in energy supplies now abound worldwide. [Vol. 37:000
Located in Resources / Climate Science Documents
File PDF document Emerging Techniques for Soil Carbon measurements
Soil carbon sequestration is one approach to mitigate greenhouse gases. However, to reliably assess the quantities sequestered as well as the chemical structure of the soil carbon, new methods and equipment are needed. These methods and equipment must allow large scale measurements and the construction of dynamic maps. This paper presents results from some emerging techniques to measure carbon quantity and stability. Each methodology has specific capabilities and their combined use along with other analytical tools will improve soil organic matter research. New opportunities arise with the development and application of portable equipment, based on spectroscopic methods, as laser-induced fluorescence, laser-induced breakdown spectroscopy and near infrared, for in situ carbon measurements in different ecosystems. These apparatus could provide faster and lower cost field analyses thus improving soil carbon contents and quality databases. Improved databases are essential to model carbon balance, thus reducing the uncertainties generated through the extrapolation of limited data.
Located in Resources / Climate Science Documents
File PDF document An Uncertain Future for Soil Carbon
Predictions of how rapidly the large amounts of carbon stored as soil organic matter will respond to warming are highly uncertain (1). Organic matter plays a key role in determining the physical and chemical properties of soils and is a major reservoir for plant nutrients. Understanding how fast organic matter in soils can be built up and lost is thus critical not just for its net effect on the atmospheric CO2 concentration but for sustaining other soil functions, such as soil fertility, on which societies and ecosystems rely. Recent analytic advances are rapidly improving our understanding of the complex and interacting factors that control the age and form of organic matter in soils, but the processes that destabilize organic matter in response to disturbances (such as warming or land use change) are poorly understood
Located in Resources / Climate Science Documents