Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
26 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Changes in forest productivity across Alaska consistent with biome shift
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal–tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline.
Located in Resources / Climate Science Documents
File PDF document Climate change and disruptions to global fire activity
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From the ensemble results, we identify areas of consensus for increases or decreases in fire activity, as well as areas where GCMs disagree. Although certain biomes are sensitive to constraints on biomass productivity and others to atmospheric conditions promoting combustion, substantial and rapid shifts are projected for future fire activity across vast portions of the globe. In the near term, the most consistent increases in fire activity occur in biomes with already somewhat warm climates; decreases are less pronounced and concentrated primarily in a few tropical and subtropical biomes. However, models do not agree on the direction of near- term changes across more than 50% of terrestrial lands, highlighting major uncertainties in the next few decades. By the end of the century, the magnitude and the agreement in direction of change are projected to increase substantially. Most far-term model agreement on increasing fire probabilities (;62%) occurs at mid- to high-latitudes, while agreement on decreasing probabilities (;20%) is mainly in the tropics. Although our global models demonstrate that long-term environmental norms are very successful at capturing chronic fire probability patterns, future work is necessary to assess how much more explanatory power would be added through interannual variation in climate variables. This study provides a first examination of global disruptions to fire activity using an empirically based statistical framework and a multi-model ensemble of GCM projections, an important step toward assessing fire-related vulnerabilities to humans and the ecosystems upon which they depend. Key words: climatic constraints; ensemble model uncertainty; flammability; global climate models (GCM); GCM agreement; global fire probabilities; resources to burn; spatial statistical models; species distribution models.
Located in Resources / Climate Science Documents
File Climate change-associated tree mortality increases without decreasing water availability
Here, we reveal temporally increasing tree mortality across all study species over the last three decades in the central boreal forests of Canada, where long-term water availability has increased without apparent climate change-associated drought. Our results suggest that the consequences of climate change on tree mortality are more profound than previously thought.
Located in Resources / Climate Science Documents
File PDF document Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park
Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species’ vulnerability do not adequately consider such impacts. global warming 􏰚 landscape change 􏰚 remote sensing 􏰚 amphibian community 􏰚 drought
Located in Resources / Climate Science Documents
File PDF document Clone history shapes Populus drought responses
Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes—DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]—derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids. epigenetics | forest trees | poplar
Located in Resources / Climate Science Documents
File PDF document Columbia Water Center White Paper America’s Water Risk: Water Stress and Climate Variability
The emerging awareness of the dependence of business on water has resulted in increasing awareness of the concept of “Water Risk” and the diverse ways in which water can pose threats to businesses in certain regions and sectors. Businesses seek to secure sustainable income. To do so, they need to maintain a competitive advantage and brand differentiation. They need secure and stable supply chains. Their exposure risks related to increasing scarcity of water can come in a variety of forms at various points in the supply chain. Given increasing water scarcity and the associated deterioration of the quantity and quality of water sources in many parts of the world, many “tools” have been developed to map water scarcity riskor water risk. Typically, these tools are based on estimates of the average water supply and demand in each unit of analysis.Often, they are associated with river basins, while business is associated with cities or counties. They provide a useful first look at the potential imbalance of supply and demand to businesses.
Located in Resources / Climate Science Documents
File PDF document Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA
Climate change is expected to increase disturbances such as stand-replacing wildfire in many ecosystems, which have the potential to drive rapid turnover in ecological communities. Ecosystem recovery, and therefore maintenance of critical structures and functions (resilience), is likely to vary across environmental gradients such as moisture availability, but has received little study. We examined conifer regeneration a decade following complete stand-replacing wildfire in dry coniferous forests spanning a 700 m elevation gradient where low elevation sites had relatively high moisture stress due to the combination of high temperature and low precipitation. Conifer regeneration varied strongly across the elevation gradient, with little tree regeneration at warm and dry low elevation sites. Logistic regression models predicted rapid increases in regeneration across the elevation gradient for both seedlings of all conifer species and ponderosa pine seedlings individually. This pattern was especially pronounced for well-established seedlings (P38 cm in height). Graminoids dominated lower elevation sites following wildfire, which may have added to moisture stress for seedlings due to competition for water. These results suggest moisture stress can be a critical factor limiting conifer regeneration following stand- replacing wildfire in dry coniferous forests, with predicted increases in temperature and drought in the coming century likely to increase the importance of moisture stress. Strongly moisture limited forested sites may fail to regenerate for extended periods after stand-replacing disturbance, suggesting these sites are high priorities for management intervention where maintaining forests is a priority.
Located in Resources / Climate Science Documents
File PDF document Consequences of widespread tree mortality triggered by drought and temperature stress
Forests provide innumerable ecological, societal and climatological benefits, yet they are vulnerable to drought and temperature extremes. Climate-driven forest die-off from drought and heat stress has occurred around the world, is expected to increase with climate change and probably has distinct consequences from those of other forest disturbances. We examine the consequences of drought- and climate-driven widespread forest loss on ecological communities, ecosystem functions, ecosystem services and land–climate interactions. Furthermore, we highlight research gaps that warrant study. As the global climate continues to warm, understanding the implications of forest loss triggered by these events will be of increasing importance.
Located in Resources / Climate Science Documents
File PDF document Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006
Much of the discussion on climate change and water in the western United States centers on decreased snowpack and earlier spring runoff. Although increasing variability in annual flows has been noted, the nature of those changes is largely unexplored. We tested for trends in the distribution of annual runoff using quantile regression at 43 gages in the Pacific Northwest. Seventy-two percent of the stations showed significant (a = 0.10) declines in the 25th percentile annual flow, with half of the stations exceeding a 29% decline and a maximum decline of 47% between 1948 and 2006. Fewer stations showed statistically significant declines in either median or mean annual flow, and only five had a significant change in the 75th percentile, demonstrating that increases in variance result primarily from a trend of increasing dryness in dry years. The asymmetric trends in streamflow distributions have implications for water management and ecology well beyond those of shifted timing alone, affect both rain and snow-dominated watersheds, and contribute to earlier timing trends in high- elevation watersheds.
Located in Resources / Climate Science Documents
File ECMAScript program Don't Blame the Beetles
Bark beetles have devastated western forests, but that may not mean more severe fires.
Located in Resources / Climate Science Documents