Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
148 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Climate Outlook Looking Much The Same, or Even Worse
Climate scientists have been feverishly preparing analyses for inclusion in the fifth climate assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) due out in 2013. At the meeting, they gave colleagues a peek at where climate science stands 5 years after their last push to inform the authoritative international evaluation . The climate models are bigger and more sophisticated than ever, speakers reported, but they are yielding the same wide range of possible warming and precipitation changes as they did 5 years ago. But when polled on other areas of concern, researchers say they see more trouble ahead than the previous IPCC assessment had, though less than some scientists had feared
Located in Resources / Climate Science Documents
File PDF document Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park
Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species’ vulnerability do not adequately consider such impacts. global warming 􏰚 landscape change 􏰚 remote sensing 􏰚 amphibian community 􏰚 drought
Located in Resources / Climate Science Documents
File PDF document Climatic extremes improve predictions of spatial patterns of tree species
Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (􏱤20% in adjusted D2, 􏱤8% and 􏱤3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.
Located in Resources / Climate Science Documents
File PDF document Clone history shapes Populus drought responses
Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes—DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]—derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids. epigenetics | forest trees | poplar
Located in Resources / Climate Science Documents
File PDF document Coastal habitats shield people and property from sea-level rise and storms
Extreme weather, sea-level rise and degraded coastal ecosystems are placing people and property at greater risk of damage from coastal hazards 1–5. The likelihood and magnitude of losses may be reduced by intact reefs and coastal vegetation 1, especially when those habitats fringe vulnerable communities and infrastructure. Using five sea-level-rise scenarios, we calculate a hazard index for every 1 km2 of the United States coastline. We use this index to identify the most vulnerable people and property as indicated by being in the upper quartile of hazard for the nation’s coastline. The number of people, poor families, elderly and total value of residential property that are most exposed to hazards can be reduced by half if existing coastal habitats remain fully intact. Coastal habitats defend the greatest number of people and total property value in Florida, New York and California. Our analyses deliver the first national map of risk reduction owing to natural habitats and indicates where conservation and restoration of reefs and vegetation have the greatest potential to protect coastal communities.
Located in Resources / Climate Science Documents
Coastal resilience is an increasingly important topic as impacts from climate change such as accelerated sea level rise and enhanced storm intensity gain prominence. The Disaster Relief Appropriations Act of 2013, which was motivated by Hurricane Sandy related damage, supported many projects throughout the affected region, including the projects found in the following pages.
Located in Resources
File PDF document Commentary: The climate policy narrative for a dangerously warming world
It is time to acknowledge that global average temperatures are likely to rise above the 2 °C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.
Located in Resources / Climate Science Documents
File PDF document Committed terrestrial ecosystem changes due to climate change
Targets for stabilizing climate change are often based on considerations of the impacts of different levels of global warming, usually assessing the time of reaching a particular level of warming. However, some aspects of the Earth system, such as global mean temperatures1 and sea level rise due to thermal expansion2 or the melting of large ice sheets3 , continue to respond long after the stabilization of radiative forcing. Here we use a coupled climate–vegetation model to show that in turn the terrestrial biosphere shows significant inertia in its response to climate change. We demonstrate that the global terrestrial biosphere can continue to change for decades after climate stabilization. We suggest that ecosystems can be committed to long-term change long before any response is observable: for example, we find that the risk of significant loss of forest cover in Amazonia rises rapidly for a global mean temperature rise above 2 ◦ C. We conclude that such committed ecosystem changes must be considered in the definition of dangerous climate change, and subsequent policy development to avoid it.
Located in Resources / Climate Science Documents
File PDF document Competitive and demographic leverage points of community shifts under climate warming
Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species’ responses are likely to drive shifts in the composition of a space- limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the impor- tance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identify- ing processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understand- ing of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns.
Located in Resources / Climate Science Documents
File PDF document Complexity of Coupled Human and Natural Systems
Integrated studies of coupled human and natural systems reveal new and complex patterns and processes not evident when studied by social or natural scientists separately. Synthesis of six case studies from around the world shows that couplings between human and natural systems vary across space, time, and organizational units. They also exhibit nonlinear dynamics with thresholds, reciprocal feedback loops, time lags, resilience, heterogeneity, and surprises. Furthermore, past couplings have legacy effects on present conditions and future possibilities.
Located in Resources / Climate Science Documents