Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
148 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Afforestation Effects on Soil Carbon Storage in the United States: A Synthesis
Afforestation (tree establishment on nonforested land) is a management option for increasing terrestrial C sequestration and mitigating rising atmo- spheric carbon dioxide because, compared to nonforested land uses, afforestation increases C storage in aboveground pools. However, because terrestrial ecosystems typically store most of their C in soils, afforestation impacts on soil organic carbon (SOC) storage are critical components of eco- system C budgets. We applied synthesis methods to identify the magnitude and drivers of afforestation impacts on SOC, and the temporal and verti- cal distributions of SOC change during afforestation in the United States. Meta-analysis of 39 papers from 1957 to 2010 indicated that previous land use drives afforestation impacts on SOC in mineral soils (overall average = +21%), but mined and other industrial lands (+173%) and wildlands (+31%) were the only groups that specifically showed categorically significant increases. Temporal patterns of SOC increase were statistically significant on former industrial and agricultural lands (assessed by continuous meta- analysis), and suggested that meaningful SOC increases require ≥15 and 30 yr of afforestation, respectively. Meta-analysis of 13C data demonstrated the greatest SOC changes occur at the surface soil of the profile, although par- tial replacement of C stocks derived from previous land uses was frequently detectable below 1 m. A geospatial analysis of 409 profiles from the National Soil Carbon Network database supported 13C meta-analysis results, indicating that transition from cultivation to forest increased A horizon SOC by 32%. In sum, our findings demonstrate that afforestation has significant, positive effects on SOC sequestration in the United States, although these effects require decades to manifest and primarily occur in the uppermost (and per- haps most vulnerable) portion of the mineral soil profile. Abbreviations: BD, bulk density; CI, confidence interval; MAP, mean annual precipitation; MAT, mean annual temperature; SOC, soil organic carbon.
Located in Resources / Climate Science Documents
File ECMAScript program All Downhill From Here?
Biologists say climate change may already be affecting high-mountain ecosystems around the world, where plants and animals adapted to cold, barren conditions now face higher temperatures and a surge of predators and competitors
Located in Resources / Climate Science Documents
File PDF document Allometry of thermal variables in mammals: consequences of body size and phylogeny
A large number of analyses have examined how basal metabolic rate (BMR) is affected by body mass in mammals. By contrast, the critical ambient temperatures that define the thermo-neutral zone (TNZ), in which BMR is measured, have received much less attention. We provide the first phylogenetic analyses on scaling of lower and upper critical temperatures and the breadth of the TNZ in 204 mammal species from diverse orders. The phylogenetic signal of thermal variables was strong for all variables analysed. Most allometric relationships between thermal variables and body mass were significant and regressions using phylogenetic analyses fitted the data better than conventional regressions. Allometric exponents for all mammals were 0.19 for the lower critical temperature (expressed as body temperature - lower critical temperature), −0.027 for the upper critical temperature, and 0.17 for the breadth of TNZ. The small exponents for the breadth of the TNZ compared to the large exponents for BMR suggest that BMR per se affects the influence of body mass on TNZ only marginally. However, the breadth of the TNZ is also related to the apparent thermal conductance and it is therefore possible that BMR at different body masses is a function of both the heat exchange in the TNZ and that encountered below and above the TNZ to permit effective homeothermic thermoregulation. Keywords: allometry,lower critical temperature,mammals,marsupials,thermal neutral zone,upper critical temperature.
Located in Resources / Climate Science Documents
File PDF document Allowable carbon emissions lowered by multiple climate targets
Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments1 places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond2–4. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise5 , ocean acidification6,7 and net primary production on land8,9. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced whenmultiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies10, climate sensitivity11 and carbon cycle feedbacks12,13 along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community14–17 to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.
Located in Resources / Climate Science Documents
File PDF document Amazon Basin climate under global warming: the role of the sea surface temperature
The Hadley Centre coupled climate–carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in midtwenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both thetropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.58C warmer air temperature associated with a global mean SST warming.
Located in Resources / Climate Science Documents
File PDF document Amid Worrisome Signs of Warming, ‘Climate Fatigue’ Sets In
As scientists debate whether climate is changing faster than anticipated, some worry that a drumbeat of dire warnings may be helping to erode U.S. public concerns about global warming
Located in Resources / Climate Science Documents
File PDF document Analysing fossil-fuel displacement
It is commonly assumed that fossil fuels can be replaced by alternative forms of energy. Now research challenges this assumption, and highlights the role of non-technological solutions to reduce fossil-fuel consumption.
Located in Resources / Climate Science Documents
File PDF document Analysis of monotonic greening and browning trends from global NDVI time-series
Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset (1981–2006). Using the complete dataset, greening and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in length of growing season were accounted for by analyzing the time-series using vegetation development stages rather than calendar days. Results differed substantially between the models, even though the input data were the same. Prominent regional greening trends identified by several other studies were confirmed but the models were inconsistent in areas with weak trends. The linear model using data corrected for seasonality showed similar trend slopes to those described in previous work using linear models on yearly mean values. The non-parametric models demonstrated the significant influence of variations in phenology; accounting for these variations should yield more robust trend analyses and better understanding of vegetation trends.
Located in Resources / Climate Science Documents
File PDF document Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland
It is difficult to obtain fossil data from the 10% of Earth’s terrestrial surface that is covered by thick glaciers and ice sheets, and hence, knowledge of the paleoenvironments of these regions has remained limited. We show that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores, enabling reconstructions of past flora and fauna. We show that high-altitude southern Greenland, currently lying below more than 2 kilometers of ice, was inhabited by a diverse array of conifer trees and insects within the past million years. The results provide direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections.
Located in Resources / Climate Science Documents
File PDF document Animal migration amid shifting patterns of phenology and predation: lessons from a Yellowstone elk herd
Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring–summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence such seasonal ranges may alter the ecological basis of migratory behavior, representing an important challenge.
Located in Resources / Climate Science Documents