Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
658 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Contemporary Evolution of Reproductive Isolation and Phenotypic Divergence in Sympatry along a Migratory Divide
Understanding the influence of human-induced changes on the evolutionary trajectories of populations is a fundamental problem [1, 2]. The evolution of reproductive isolation in sympatry is rare, relying on strong selection along steep ecological gradients [3–7]. Improved wintering conditions owing to human activities promoted the recent establishment of a migratory divide in Central European blackcaps (Sylvia atricapilla) [8, 9]. Here, we show that differential migratory orientation facilitated reproductive isolation of sympatric populations within <30 generations. The genetic divergence in sympatry exceeds that of allopatric blackcaps separated by 800 km and is associated with diverse phenotypic divergence. Blackcaps migrating along the shorter northwestern route have rounder wings and narrower beaks and differ in beak and plumage color from sympatric south- west-migrating birds. We suggest that distinct wing and beak morphologies are ecomorphological adaptations resulting from divergent, multifarious selection regimes during migration. We hypothesize that restricted gene flow accelerates the evolution of adaptive phenotypic divergence toward the contrasting selection regimes. Similar adaptive processes can occur in more than 50 bird species that recently changed their migratory behavior [10, 11] or in species with low migratory connectivity. Our study thus illustrates how ecological changes can rapidly drive the contemporary evolution of ecotypes.
Located in Resources / Climate Science Documents
File PDF document Biodiversity and the Feel-Good Factor: Understanding Associations between Self-Reported Human Well-being and Species Richness
Over half of the world’s human population lives in cities, and for many, urban greenspaces are the only places where they encounter biodiversity. This is of particular concern because there is growing evidence that human well-being is enhanced by exposure to nature. However, the specific qualities of greenspaces that offer the greatest benefits remain poorly understood. One possibility is that humans respond positively to increased levels of biodiversity. Here, we demonstrate the lack of a consistent relationship between actual plant, butterfly, and bird species richness and the psychological well-being of urban greenspace visitors. Instead, well-being shows a positive relationship with the richness that the greenspace users perceived to be present. One plausible explanation for this discrepancy, which we investigate, is that people generally have poor biodiversity- identification skills. The apparent importance of perceived species richness and the mismatch between reality and perception pose a serious challenge for aligning conservation and human well-being agendas.
Located in Resources / Climate Science Documents
File PDF document Creating Wetlands: Primary Succession, Water Quality Changes, and Self-Design over 15 Years
The succession of vegetation, soil development, water quality changes, and carbon and nitrogen dynamics are summarized in this article for a pair of 1-hectare flow-through-created riverine wetlands for their first 15 years. Wetland plant richness increased from 13 originally planted species to 116 species overall after 15 years, with most of the increase occurring in the first 5 years. The planted wetland had a higher plant community diversity index for 15 years, whereas the unplanted wetland was more productive. Wetland soils turned hydric within a few years; soil organic carbon doubled in 10 years and almost tripled in 15 years. Nutrient removal was similar in the two wetlands in most years, with a trend of decreased removal over 15 years for phosphorus. Denitrification accounted for a small percentage of the nitrogen reduction in the wetlands. The wetlands were effective carbon sinks with retention rates of 1800–2700 kilograms of carbon per hectare per year, higher than in comparable reference wetlands and more commonly studied boreal peatlands. Methane emission rates are low enough to create little concern that the wetlands are net sources of climate change radiative forcing. Planting appears to have influenced carbon accumulation, methane emissions, and macrophyte community diversity.
Located in Resources / Climate Science Documents
File PDF document Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model.pdf
Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO2 predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage un- der radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink frac- tion. Our results show a significant growth in the airborne fraction of anthropogenic CO2 emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO2 concentration and associated anthropogenic climate change will be reduced as additional climate models introduce carbon-nitrogen cycle interactions in their land components.
Located in Resources / Climate Science Documents
File PDF document Ecosystem Processes and Human Influences Regulate Streamflow Response to Climate Change at Long-Term Ecological Research Sites
Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-deficit ecosystems. Streamflow was correlated with climate variability indices (e.g., the El Niño–Southern Oscillation, the Pacific Decadal Oscillation, the North Atlantic Oscillation), especially in seasons when vegetation influences are limited. Air temperature increased significantly at 17 of the 19 sites with 20- to 60-year records, but streamflow trends were directly related to climate trends (through changes in ice and snow) at only 7 sites. Past and present human and natural disturbance, vegetation succession, and human water use can mimic, exacerbate, counteract, or mask the effects of climate change on streamflow, even in reference basins. Long-term ecological research sites are ideal places to disentangle these processes.
Located in Resources / Climate Science Documents
File PDF document Beyond Reserves and Corridors: Policy Solutions to Facilitate the Movement of Plants and Animals in a Changing Climate
As the Earth’s climate changes, many species will have to move across human-dominated landscapes to track suitable climates and changing ecosystems. Given the magnitude of projected future climate change, expanding and connecting reserve networks—two of the most commonly recommended adaptation strategies for protecting biodiversity in a changing climate—will be necessary but insufficient for preventing climate-induced extinctions. In the present article, we explore additional policy options that could be implemented to facilitate species movements in a changing climate. We discuss both existing and new policies that have the potential to increase landscape permeability, protect species on the move, and physically move species to address climate change. Keywords: climate change, adaptation, species movement, policy
Located in Resources / Climate Science Documents
File PDF document Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions
Biome-scale disturbances by eruptive herbivores provide valuable insights into species interactions, ecosystem function, and impacts of global change. We present a conceptual framework using one system as a model, emphasizing interactions across levels of biological hierarchy and spatiotemporal scales. Bark beetles are major natural disturbance agents in western North American forests. However, recent bark beetle population eruptions have exceeded the frequencies, impacts, and ranges documented during the previous 125 years. Extensive host abundance and susceptibility, concentrated beetle density, favorable weather, optimal symbiotic associations, and escape from natural enemies must occur jointly for beetles to surpass a series of thresholds and exert widespread disturbance. Opposing feedbacks determine qualitatively distinct outcomes at junctures at the biochemical through landscape levels. Eruptions occur when key thresholds are surpassed, prior constraints cease to exert influence, and positive feedbacks amplify across scales. These dynamics are bidirectional, as landscape features influence how lower-scale processes are amplified or buffered. Climate change and reduced habitat heterogeneity increase the likelihood that key thresholds will be exceeded, and may cause fundamental regime shifts. Systems in which endogenous feedbacks can dominate after external forces foster the initial breach of thresholds appear particularly sensitive to anthropogenic perturbations. Keywords: thresholds, plant-insect interactions, landscape disturbance, forest management, anthropogenic change
Located in Resources / Climate Science Documents
File PDF document Biophysical controls on organic carbon fluxes in fluvial networks.pdf
Metabolism of terrestrial organic carbon in freshwater ecosystems is responsible for a large amount of carbon dioxide outgassing to the atmosphere, in contradiction to the conventional wisdom that terrestrial organic carbon is recalcitrant and contributes little to the support of aquatic metabolism. Here, we combine recent findings from geophysics, microbial ecology and organic geochemistry to show geophysical opportunity and microbial capacity to enhance the net heterotrophy in streams, rivers and estuaries. We identify hydrological storage and retention zones that extend the residence time of organic carbon during downstream transport as geophysical opportunities for microorganisms to develop as attached biofilms or suspended aggregates, and to metabolize organic carbon for energy and growth. We consider fluvial networks as meta-ecosystems to include the acclimation of microbial communities in downstream ecosystems that enable them to exploit energy that escapes from upstream ecosystems, thereby increasing the overall energy utilization at the network level.
Located in Resources / Climate Science Documents
File Assessing the Causes of Late Pleistocene Extinctions on the Continents
One of the great debates about extinction is whether humans or climatic change caused the demise of the Pleistocene megafauna. Evidence from paleontology, climatology, archaeology, and ecology now supports the idea that humans contributed to extinction on some continents, but human hunting was not solely responsible for the pattern of extinction everywhere. Instead, evidence suggests that the intersection of human impacts with pronounced climatic change drove the precise timing and geography of extinction in the Northern Hemisphere. The story from the Southern Hemisphere is still unfolding. New evidence from Australia supports the view that humans helped cause extinctions there, but the correlation with climate is weak or contested. Firmer chronologies, more realistic ecological models, and regional paleoecological insights still are needed to understand details of the worldwide extinction pattern and the population dynamics of the species involved.
Located in Resources / Climate Science Documents
File PDF document Disappearing Arctic sea ice reduces available water in the American west
Recent decreases in Arctic sea ice cover and the probability of continued decreases have raised the question of how reduced Arctic sea ice cover will influence extrapolar climate. Using a fully coupled earth system model, we generate one possible future Arctic sea ice distribution. We use this ‘‘future’’ sea ice distribution and the corresponding sea surface temperatures (SSTs) to run a fixed SST and ice concentration experiment with the goal of determining direct climate responses to the reduction in Arctic sea ice that is projected to occur in the next 50 years. Our results indicate that future reductions in Arctic sea ice cover could significantly reduce available water in the American west and highlight the fact that the most severe impacts of future climate change will likely be at a regional scale.
Located in Resources / Climate Science Documents